
www.manaraa.com

Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-7-2004

Ad Hoc Integration and Querying of Heterogeneous Online Ad Hoc Integration and Querying of Heterogeneous Online

Distributed Databases Distributed Databases

Liangyou Chen

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Chen, Liangyou, "Ad Hoc Integration and Querying of Heterogeneous Online Distributed Databases"
(2004). Theses and Dissertations. 374.
https://scholarsjunction.msstate.edu/td/374

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/374?utm_source=scholarsjunction.msstate.edu%2Ftd%2F374&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

www.manaraa.com

AD HOC INTEGRATION AND QUERYING OF HETEROGENEOUS

ONLINE DISTRIBUTED DATABASES

By

Liangyou Chen

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2004

www.manaraa.com

Copyright by

Liangyou Chen

2004

www.manaraa.com

AD HOC INTEGRATION AND QUERYING OF HETEROGENEOUS

ONLINE DISTRIBUTED DATABASES

By

Liangyou Chen

Approved:

Julia E. Hodges
Professor of Computer Science and
Engineering, and Department Head
(Major Professor)

Hasan M. Jamil
Associate Professor of Computer Science
Wayne State University
(Research Director)

Eric Hansen
Associate Professor of Computer Science
and Engineering
(Committee Member)

Ioana Banicescu
Associate Professor of Computer Science
and Engineering
(Committee Member)

Walter J. Diehl
Professor of Biology Science
(Committee Member)

A. Wayne Bennett
Dean of the College of Engineering

www.manaraa.com

Name: Liangyou Chen

Date of Degree: August 7, 2004

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Julia E. Hodges

Director of Dissertation: Dr. Hasan M. Jamil

Title of Study: AD HOC INTEGRATION AND QUERYING OF HETEROGENEOUS
ONLINE DISTRIBUTED DATABASES

Pages in Study: 177

Candidate for Degree of Doctor of Philosophy

This dissertation provides an ad hoc integration methodology to manage and integrate

heterogeneous online distributed databases on demand. The problem arises from an im-

pending demand from scientific users to conveniently manage existing Web data along

with the complexity involved in the construction of a functional data federation system

using existing data integration technologies. We close this gap with a databases manage-

ment framework accompanying novel Web data specification languages, wrapper gener-

ation technologies, and distributed query processing techniques. A major achievement

of this dissertation is the establishment of a sound relational data model for Web data.

Under this model, the Web becomes a synthetic extension of the traditional database sys-

tems. Consequently, a novice user of our system can cheaply integrate a large number of

distributed Web sources with in-house databases for daily scientific data analysis purpose.

www.manaraa.com

The relational Web modeling leads to a practical ad hoc integration system – the Mete-

oroid system (a MEthodology for ad hoc inTEgration of Online distributed heteROgeneous

Internet Data) – in the context of biological data interoperability. We identify that a main

difficulty for ad hoc integration lies in the lack of a fully automated wrapper generation

and maintenance technique for general semi-structured data such as HTML, XML and

plain text documents. We address this issue through a thorough study of characteristics of

online Web data and devise various automated wrapper techniques to facilitate robust data

wrapping tasks. With this technique, form-based Web data and table-based Web data can

be treated like traditional relational databases. A seamless interoperation environment for

Web data and in-house databases is possible.

Another difficulty impeding ad hoc integration is in the query processing for heteroge-

neous distributed sources, where conflict of data is common and on demand mediation of

distributed sources is desirable. The dynamicity and unpredictability of Web data further

complicate the query processing task. We studied limitations posed by the Web environ-

ment for integration query processing and developed innovative techniques to expedite the

early appearance of available results.

Finally we demonstrate a prototype system for ad hoc integration of heterogeneous

biological data. In the system, visual Web-based interfaces guide the integration of hetero-

geneous data for novice users. A declarative environment is supported for ad hoc querying

and management of distributed data sources.

www.manaraa.com

DEDICATION

To my dear Mom and Dad, who always stand by me and support me.

ii

www.manaraa.com

ACKNOWLEDGMENTS

First, I thank my dissertation advisor, Dr. Hasan Jamil, for his continuous support and

coaching of my PhD work. He has granted me generous financial aid in all my PhD study

years and allowed me to focus on issues from the research. He has given me the freedom

to investigate problems in the direction I am most interested and continuously inspired

me with fresh ideas. He has devoted much effort in helping me to improve the quality

of this study and skills to compose research papers. I have been benefited much from

his supervision in the Intelligent Database Systems Research Group in the Department of

Computer Science and Engineering.

I also want to thank my major professor, Dr. Julia Hodges, for her continuous revision

of this dissertation and helping me refine several key concepts in it. She also kindly guided

me through the procedures for my graduation. Without her help, I will not able to complete

my program in time. Thanks also to Dr. Eric Hansen, Dr. Ioana Banicescu and Dr. Walter

Diehl for serving on my committee and providing valuable comments for me.

I would like to thank the National Science Foundation (NSF) and the Engineering

Research Center (ERC) at Mississippi State University for their financial support (grants

EPS-0082979 and EPS-0132618). I will thank Dr. David Thompson for his help in secur-

ing my financial source in year 2003–2004.

iii

www.manaraa.com

I want to take this chance to thank all my friends in Mississippi State University who

care about my progress, especially peoples in the Intelligent Database Systems Research

Group including Zhijie Guan, Qing Zhao, Yin Zhang and Jianming Shi and my friends

Zhen Liu, Wei Li and Yong Wang.

iv

www.manaraa.com

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

I. INTRODUCTION . 1

1.1 A Motivating Example . 5
1.2 The Meteoroid Ad Hoc Integration System: An Overview 8
1.3 Definition of Concepts . 9
1.4 Contribution . 11
1.5 Performance Measurement . 13
1.6 Dissertation Overview . 15

II. RELATED WORK . 16

2.1 Review of Heterogeneous Database Integration Systems 16
2.2 Review of Functional Wrapper . 20
2.3 Review of Wrapper Generation . 21
2.4 Review of Wrapper Maintenance . 25
2.5 An Overall Comparison to the Ariadne Approach 27

III. REMOTE USER-DEFINED FUNCTIONS 30

3.1 Introduction . 31
3.1.1 A Motivating Example . 33
3.1.2 Organization of This Chapter 38

3.2 Tag Tree Data Model for Semi-Structured Documents 38
3.3 Remote User-Defined Functions . 41

3.3.1 Using the Internet Functions 43

v

www.manaraa.com

CHAPTER Page

3.3.2 Internet Function Definition Language (IFDL) 44
3.3.3 Hyper Text Query Language (HTQL) 46

3.4 Semi-Automatic IFDL Wrapper Generation using PickUp 51
3.4.1 The PickUp System . 52
3.4.2 Architecture of the PickUp System 53

3.4.2.1 The Data Navigation Module 55
3.4.2.2 Wrapper Generation Module 55
3.4.2.3 Algorithm for Wrapper Generation 57
3.4.2.4 The Filtering and Recommendation Module 59

3.5 LifeDB: A Prototype Database Query Interface Based on HTQL and IFDL 62
3.5.1 The LifeDB Web-based Interface 62
3.5.2 System Architecture . 65

3.6 Summary and Future Research . 66

IV. AUTOMATIC TABLE WRAPPER GENERATION 68

4.1 Introduction . 68
4.2 Hierarchical Repeated Structure Recognition 73

4.2.1 Structural Relationships of HTML Elements in Tag-Tree Data
Model . 73

4.2.2 Discovery of Regular Structures 75
4.2.2.1 Target Structure Recognition 76
4.2.2.2 HTQL Path Expression Generation 78
4.2.2.3 Structural Relationship Recognition 79
4.2.2.4 Model Generation and Validation 82

4.3 Experiment of HRSR . 86
4.3.1 Experimental Results . 86
4.3.2 Comparison to Related Work 87
4.3.3 Examples . 91

4.4 Composite Wrappers . 93
4.5 Summary . 94

V. AUTOMATIC WRAPPER MAINTENANCE 96

5.1 Introduction . 97
5.2 Automatic Wrapper Maintenance . 102
5.3 Formal Model of Table Wrapper and Wrapper Maintenance 105

5.3.1 Model of Semi-structured Data 105
5.3.2 Model of Table Wrapper . 105
5.3.3 Model of Type, Schema and Criterion 106

vi

www.manaraa.com

CHAPTER Page

5.3.4 Problem Formulation . 108
5.4 Automatic Table Wrapper Generation 110

5.4.1 Target Structure Recognition 110
5.4.2 HTQL Path Expression Generation 111
5.4.3 Structural Relationship Recognition 111
5.4.4 Performance Analysis of Table Wrappers Generation 112

5.5 Pattern Construction . 112
5.6 Wrapper Verification . 117
5.7 Wrapper Maintenance Algorithms . 121

5.7.1 Wrapper Adjustment with Candidate Paths 121
5.7.2 Re-targeting the Table . 122
5.7.3 Regenerate Wrapper Fields . 124

5.8 Experiment and Results . 125
5.9 Conclusion and Future Work . 130

VI. THE METEOROID AD HOC INTEGRATION SYSTEM 132

6.1 Introduction . 133
6.2 A Motivating Example . 136
6.3 Ad Hoc Data Integration Solution . 138
6.4 Declarative Support for Web Data . 141
6.5 Multi-layer Table and View Logical Design 144

6.5.1 Data Source Definition . 144
6.5.2 Virtual Table Definition . 145
6.5.3 Virtual View Definition . 146
6.5.4 Advantage of Multi-layer Logical Design 147

6.6 Scheduling-oriented Query Processing 150
6.6.1 Dependencies Among Data . 150
6.6.2 Query Rewriting . 152
6.6.3 Query Transformation . 153
6.6.4 Query Scheduling . 153
6.6.5 Results Mediation . 156

6.7 Visual Interfaces for Ad Hoc Integration 157
6.7.1 Picking Up Web Data From Scratch 158
6.7.2 Fusing Distributed Web Sources 161
6.7.3 Monitoring Query Results . 162

6.8 Conclusion . 164

VII. CONCLUSION . 166

vii

www.manaraa.com

Page

REFERENCES . 170

viii

www.manaraa.com

LIST OF TABLES

TABLE Page

4.1 Automatic wrapper generation experiment results 88

4.2 Comparison of wrapper construction work 90

5.1 The hyper-pattern-strings (HPs) for the first tuple in Figure 5.2 113

5.2 The text-pattern-strings (TPs) for the first tuple in Figure 5.2 115

5.3 Data fields in the wrapper maintenance experiment 126

5.4 Wrapper maintenance results for position changes 128

5.5 Wrapper maintenance results for record structure changes 129

5.6 Wrapper maintenance results for combined table position and record structure
changes . 130

ix

www.manaraa.com

LIST OF FIGURES

FIGURE Page

3.1 The NCBI BLAST input interface . 34

3.2 The second step: The submission ID and estimated wait time message page . 35

3.3 The final step: BLAST results . 35

3.4 Example of an item graph. 40

3.5 Example of a tag tree graph. 41

3.6 Document D1 . 49

3.7 Document D1 displayed by a Web browser 50

3.8 A snapshot of a wrapper generation session in PickUp 54

3.9 The LifeDB user interface . 63

3.10 A sample LifeDB response corresponding to a query involving RUDFs. . . . 64

3.11 The system architecture for LifeDB query interfaces 65

4.1 The set of Homo sapiens ovarian tissue genes found in NCBI CGAP Database 71

4.2 MGC clones for the gene NM 001614 shown in figure 4.1 71

4.3 The structural table from figure 4.2 recreated by the wrapper 91

4.4 A list of books from NCBI represented using loose table structures without
table tags . 92

4.5 A faithful recreation of the books table in figure 4.4 by the wrapper generated
by PickUp. 92

x

www.manaraa.com

5.1 The NCBI nucleotide database search results 100

5.2 A structural view of the NCBI nucleotide database 100

5.3 The relationship of automatic wrapper maintenance components 109

5.4 Wrapper verification rules in XML . 120

5.5 An NCBI record entry in HTML . 131

6.1 Definition of the LocusLink data source . 145

6.2 An example of the GenBank virtual table definition 146

6.3 A virtual view definition connecting DBGET/gene and DBGET/LinkDB Web
tools . 148

6.4 Picking up a table of Web data in a click . 159

6.5 Customizing RUDF table creation . 160

6.6 Connecting tables incrementally . 162

6.7 Generating SQL queries from wizard . 163

6.8 Monitoring in progress query results . 164

xi

www.manaraa.com

CHAPTER I

INTRODUCTION

Sharing data and applications as digital documents is routine in disciplines such as

the life sciences. However, heterogeneity in representation, terminology and semantics in

particular makes it extremely difficult for the biologists to exploit the wealth of available

online resources in a coherent and ad hoc fashion. New applications in biology demand

automated translation, transformation and manipulation of data from various data repos-

itories, and processing in a non-trivial way using a complex set of tools in a pipelined

fashion. Traditionally, biologists have relied on developing customized tools and data

repositories. They often have done so by replicating data and tools in a way that have

resulted in unmanageable redundancy and inconsistency management problems. As the

applications grew complex and available data became huge, this approach to data manipu-

lation failed from the scalability and effectiveness standpoints. It is thus safe to claim that

customized portals, such as NCBI GenBank, do not provide adequate data and application

support in flexible ways and often restrict their use by the vision and use anticipated by

their designers. Consequently, secondary processing and remedial querying are the only

ways researchers can complete their data processing needs. Such manual and offline pro-

1

www.manaraa.com

2

cessing is expensive and error prone. It is desirable that a declarative query language with

support for compositionality and closure property is available for such applications.

There are considerable contributions in the literature trying to explore a federated

databases approach to managed Web data. The main idea is to treat Web sources as

standalone databases and exploit traditional federated databases technologies to process

queries across Web boundaries. It is, however, difficult for novice users to set up the nec-

essary data federation environment in order to integrate existing Web data. For example, a

user of an existing system may require days to train a wrapper for each Web source to meet

the federation requirement, or each Web source may be required to provide a predefined

interface that can be recognized only by the federation system. These limitations impede

life science researchers to fully utilize the advantages set forth by the data integration

solution.

The work described in this dissertation provides a new foundation for Web data inte-

gration under a relational framework. The main contribution is the development of a set of

techniques to robustly and automatically transform Web data into relational entities such

as tables and functions. The closure property of relational algebra ensures that computa-

tion of Web data can be recursively applied to distributed Web sources regardless of their

physical location and representation. The robustness of our approach is re-ensured with an

automatic wrapper maintenance technique. Our system is more scalable than peer systems

in that both the wrapper generation and wrapper maintenance tasks have been fully auto-

www.manaraa.com

3

mated. As a result, our system can easily incorporate a large number of Web sources, and

the tedious and brittle wrapper development problem faced by other systems is avoided.

The results of this dissertation research address a problem for life science researchers

to effectively utilize and exploit the explosive biological data and tools published every

day in the post-genomic era. Combining biological data from distributed Web repositories

and performing computations on that data have been major concerns in this work. The

Web has been designed mainly for human navigation and includes little help for comput-

ers to recognize the data content. Our techniques allow computers to extract interesting

structured information from Web data automatically and allow biologists to query the Web

in an ad hoc fashion. Complex Web navigation and data mediation is captured and real-

ized in a simple declarative language. Large volume data computations can be scheduled

and computed automatically. Furthermore, the declarative language allows Web data and

tools to be defined electronically and reused repeatly, providing a more effective way for

researchers to share data and tools world-wide.

This research closes a gap between the end-user ad hoc data integration requirement

and the advantage of data federation endeavor. We show that a convenient and robust

database management environment for heterogeneous online distributed database integra-

tion is possible. Under this environment, a novice user can deploy a Web data integration

system on demand and computer-aided programs can be easily developed to further facil-

itate scientific data discovery processes.

www.manaraa.com

4

The Web documents that biologists use to share information are primarily of two kinds

- forms and documents. Forms may be embedded into a document to make it complex.

Again, these documents can be classified as static or dynamic based on how they are cre-

ated. Static documents are usually created once by some agent and are stored for users

to access as HTML or XML documents. Dynamic documents on the other hand are cre-

ated by systems in response to some stimuli - a query or update request through a form,

or asp/jsp programs from stored information. Dynamic documents are context sensitive,

created to respond to a particular query, and are used to meet the information up-to-date

requirement.

The research described in this dissertation achieved ad hoc data integration in three

steps. First, we developed an SQL abstraction for HTML forms so that such forms can

be viewed as remote user-defined functions. Such an abstraction aims at reducing the

impedance of mismatch between SQL databases and the HTML forms and supports a

seamless integration of form documents with relational databases. As a second step, we

developed simple and composite wrapper generation techniques to extract information

generated by forms in response to a query. We also developed techniques to process and

analyze extracted data at a local machine. Third, we developed query processing tech-

niques for residual processing. We have done so by developing a declarative language

for genomic applications that supports compositionality and closure property. Finally, we

developed a prototype system to demonstrate that the ideas explored in the dissertation are

sound and practical.

www.manaraa.com

5

The research stands out in several ways in comparison to contemporary research. The

emergence of the Internet renewed the interest of database researchers in investigating

issues related to the interoperability of Web-based data repositories. Systems such as

TSIMMIS [18], SIMS [5], HERMES [1], Information Manifold [57], WebFindit [14],

Ariadne [49], and so on attempt to address this issue from several different standpoints.

However, these systems, no matter how sophisticated they are, do not address ad hoc inte-

gration. Second, these systems generally adopt the wrapper-mediator architecture, which

may incur a heavy burden in wrapper maintenance, but fail to exploit opportunities that

exist for automatic wrapper generation and maintenance. Finally, most of these systems

require expensive hardware and expert involvement for the construction of an interoper-

able system and hence are not suitable for occasional or small-scale users. From these

standpoints, our research is unique and novel.

1.1 A Motivating Example

Accompanying the complete sequencing of whole genomes of several species, a larger

scale genetic information interpretation is underway. Prediction of biological functions,

for example, now has more options such as single gene similarity searches, biological

pathway comparisons and genetic network references. Various biological data repositories

have developed databases and Web tools facilitating genetic data analysis. For example,

the BLAST tool at NCBI [83] allows searching of similar gene sequences to infer simi-

lar gene functions. KEGG (Kyoto Encyclopedia of Genes and Genomes) [12] developed

www.manaraa.com

6

integrated pathway/genome databases allowing prediction of metabolic pathways from

genome sequences. LocusLink at NCBI [59] provides a single query interface connecting

curated sequences with descriptive information including official nomenclature, sequence

accessions, map locations and related websites. It is, however, a painstaking job for biolo-

gists to actively utilize these distributed Web resources for even simple data analysis tasks

given more and more genomic data in hand.

Consider a simple gene expression prediction scenario where a scientist wants to utilize

the KEGG pathway database to predict from a set of gene IDs the relative degree that each

gene is contributing to a certain gene function. Since KEGG cannot recognize a gene

ID to search for participating pathways, the user needs to go throught a sequence of data

discovery procedures:

1. Go to the LocusLink database to retrieve the description of each gene corresponding
to the gene ID;

2. Use a special tool DBGET/gene [26] at the KEGG site to convert the gene descrip-
tion into an entry name recognizable by KEGG database.

3. The entry name is then pasted into a DBGET/LinkDB [27] interface to retrieve the
participating pathways.

4. Each pathway is connected to an XML/HTML file describing the relationships and
reactions among genetic objects.

5. The pathway files are then analyzed to detect activating gene products.

6. The number of pathways each gene activates or inhibits reflects the relative degree
of the gene affecting a gene function.

The above procedure needs to access various distributed data sources including:

A: The set of gene IDs for analysis in a local database;

www.manaraa.com

7

B: The LocusLink database at the NCBI website returning a record of gene description

given a gene ID;

C: DBGET/gene at the KEGG site returning a set of entry names given a gene descrip-

tion;

D: DBGET/LinkDB at the KEGG site returning a set of pathway links from an entry

name;

E: Pathway description files at KEGG in XML/HTML format.

In this example, dataset A is a structured database, datasets B, C and D are Web tools

and dataset E is a set of semi-structured data files. In order to analyze a gene function

(for example, to identify a human cancer-activating gene), a biologist needs to go through

the above data discovery procedure over and over for each relevant gene from a human

genome and apply certain filtering conditions at each discovery step such as limiting the

entry name to start with a ‘hsa:’ string (representing human gene entries).

The above data discovery procedure may turn out to be manually frustrating when the

number of genes to be analyzed is large. Unfortunately, it has become routine for many

biologists to have to deal with such kind of problems with even more complex operations.

It is ideal that the heterogeneous data sources be managed under a uniform framework,

queries be recorded and submitted in a declarative way and the complexity behind the

physical data operations be hidden from biologists. From the database point of view, the

above query can be simply expressed in an algebraic expression as:

πgene−id,pathway,typeσentry like ‘hsa:%′(A �� B �� C �� D �� σtype=‘activate′E) (1.1)

www.manaraa.com

8

It is the purpose of this dissertation to set up a foundation for direct application of high-

level data manipulation operations – algebra operations – in the heterogeneous Web data

environment. By this approach, the Web becomes a synthetic extension of the traditional

database systems. Automated tools and visual interfaces can be easily developed provided

with a sound database management support.

1.2 The Meteoroid Ad Hoc Integration System: An Overview

We have developed an ad hoc data integration system, namely Meteoroid (short for A

MEthodology for ad hoc inTEgration of Online distributed heteROgeneous Internet Data),

for biologists to integrate experimental data with online resources. A navigation oriented

Web interface is designed to allow users to ‘pick up’ interesting data sources and attributes

from the Web by employing our automated PickUp wrapper technique. ‘Picking up’ a

piece of information usually means a user clicking or selecting a data item. For exam-

ple, in order to retrieve gene descriptions from LocusLink, a user can ‘pick up’ the search

form from the LocusLink website, enter a search term, submit the search, and ‘pick up’

the gene description from the result page. A user’s behavior in this sequence of opera-

tions is captured by the Meteoroid system and is tranformed into internal wrappers. A

wrapper is a set of data extraction rules that converts semi-structured or unstructured data

(such as XML and HTML data) into structured data (such as table and views in relational

databases). Wrappers are learned and maintained automatically with our automatic wrap-

per techniques. Schema constraints and interoperability rules can be confined by user

www.manaraa.com

9

requirements. In this example, the gene description retrieval operation can be represented

as a relational view with fields of gene ID and gene description. Distributed Web data

access can then be realized with a declarative language such as SQL. A visual wizard

interface is designed to compose SQL expressions automatically for biological users.

The realization of this picture of ad hoc integration requires that one resolve the in-

teroperability issue of general Web-based semi-structured data with structured data. We

demonstrate the soundness of our solution through the reductions of form-based Web data

into functions and data intensive Web pages into tables. The reductions make access to

Web data congruent to the standard of SQL:2003 [31], which guarantees closure and com-

positionality. The robustness of our solution is secured with a set of automation technolo-

gies. We have verified that a certain degree of variation in Web data will not break our

system.

1.3 Definition of Concepts

This section defines several concepts that will be used in this dissertation. We will assume

the reader is familiar with basic database concepts such as tuple, record, schema, relational

data model, etc. We will also assume the reader is familiar with the Web and HTML data.

Definition 1 (Structured data) Structured data are data that conform to a well defined

schema.

www.manaraa.com

10

Data managed by existing commercial database management systems are typical struc-

tured data.

Definition 2 (Semi-structured data) Semi-structured data are tag-enriched documents

that do not conform to a predefined schema. Rather, semi-structured data are self-described

by the tags encoding with the data.

HTML and XML documents are typical semi-structured data.

Definition 3 (unstructured data) Unstructured data are plain files that are neither tag-

enriched nor conform to a predefined schema.

Examples of unstructured data are plain text files, image files, and multimedia files. This

dissertation considers a limited form of unstructured data in plain text format.

Definition 4 (Data heterogeneity) Data heterogeneity refers to the existance of data in

multiple formats that conform to different data models and have different semantic mean-

ings.

Definition 5 (Data integration) Data integration is the development of a centralized data

management and query platform for physically distributed data sources that may or may

not conform to a single data model.

Definition 6 (heterogeneous database integration system) A heterogeneous database in-

tegration system provides a centralized data management framework for structured, semi-

structured, and unstructured data sources under a unified data model.

www.manaraa.com

11

Definition 7 (Wrapper) In the information integration field, a wrapper refers to a pro-

gram or a set of data extraction rules that converts semi-structured or unstructured data

into structured data for data integration purpose.

Definition 8 (Mediator) A Mediator is a system to integrate and refine data from multiple

sources.

Definition 9 (Data interoperability) Data interoperability is the need for meaningful in-

tegration of heterogeneous data.

Definition 10 (Ad hoc integration) Ad hoc integration is a data integration approach to

provide timely management and querying of distributed Web data sources for non-expert

users.

An ad hoc integration system is essentially a heterogeneous database integration system.

However, ad hoc integration provides greater ease of use for non-expert users. As a result,

ad hoc integration addresses new issues that allows the users to acquire and integrate new

data sources in a timely manner.

1.4 Contribution

The major contribution of this dissertation is the deployment of a relational database con-

cept for Web data. The overall approach is to robustly and automatically transform Web

data into relational entities such as functions and tables. Specifically, three transformation

www.manaraa.com

12

techniques synthesize this dissertation: transformation of form-based Web data into func-

tions, transformation of table-based Web data into tabes, and transformation of integration

queries into distributed Web queries. As a result, three specific contributions are made by

this research. The first contribution is development of a Remote User-Defined Function

(RUDF) concept for the integration of form-based Web data. RUDF makes definition and

querying of dynamic Web data trivial from a database system. Development of RUDF is

assisted with a novel PickUp technology and is user-friendly. The second contribution is

invention of an automatic wrapper for table-based Web documents. Such table wrapper

discovers and reconstructs structured information from Web data and becomes a build-

ing block for algebra-based Web computing. The automatic wrapper is enhanced with an

automatic wrapper maintenance technique to further ensures the robustness of table wrap-

pers and allows ad hoc integration systems to be easily scaled large. Finally we extend

the traditional relational database model with the two new constructs of remote functions

and remote tables and study new query transformation techniques for this extension. A

novel pipeline-scheduling technique is devised to cope with a variety of Web querying

problems. This results in a homogeneous database environment for heterogeneous and

distributed Web data. The ability to automatically construct remote functions and remote

tables ensures integration can be done in an ad hoc fashion according to the users’ re-

quirement. This resolved a problem for life science researchers to have to integrate and

combine data from a rapidly increasing number of Web repositories. As a conclusion,

www.manaraa.com

13

this dissertation establishes an ad hoc integration framework to resolve the integration and

interoperability problem for heterogeneous and distributed Web data.

1.5 Performance Measurement

An automated wrapper technique is a main ingredient of an ad hoc integration system.

High performance and robust wrapper technologies will free users from tedious manual

wrapper development and maintenance tasks. We have measured the porformance of our

wrapper technique and compare them to related work to exlain how it uniquely facilitated

the ad hoc integration purpose.

First, we have measured the learning and wrapping time of our wrapper technique and

compared it to reported results in related work. Wrapper generation time (or wrapper in-

duction time) is the time to learn a wrapper from a given Web page (or a sample data set).

Wrapper execution time is the time to execute a generated wrapper against a test page.

Since wrapper learning is more complex than wrapper execution, a wrapper generation

time is typically greater than a wrapper execution time. A small wrapper learning and

wrapping time is favorable in an ad hoc integration system. The time to generate an effec-

tive wrapper also depends on other factors such as the necessity to develop an application

ontology, the need to collect more than one sample and the time to label the sample data

for wrapper training and generation purposes. We have compared these factors between

various existing wrapper generation tools and shown that our wrapper tool is the most

labor-free tool and is ideal for ad hoc integration.

www.manaraa.com

14

Second, we measured the effectiveness of automatic table wrappers. This was done by

measuring the success rate of a wrapper against a collection of sample table-based docu-

ments. We chose examples from major biological databases that return a table of results

and popularly tested commercial Web sites that include table contents. Automatically

wrapped attributes include tags that have non-blank text or special tags such as image tag.

The generated wrapper was validated against 20 other pages from the same website. The

error rate of each validation is the ratio of missing attributes by the generated wrapper and

the total table attributes in the page. A low error rate is desirable for an automated wrapper.

Third, we measured the maintainability of our wrappers. This was done by manually

changing the source documents and measuring the success rate of the wrappers to adapt to

the changes. There are typically three kinds of changes for table content Web pages: table

movement, where the position of the target table moves significantly in the page; record

structure change, where attributes of the target table may change in column positions;

and a combination of table movement and record structure change. We have manually

enumerated possible changes in a Web page and create some artificial test sets based on

real example pages. Since the artificial test data that was used was complete for each

test purpose, the experiment results reflect the robustness of our wrapper technique for

changing Web pages. Our fully automated wrapper maintenance technique is unique in

the literature.

Finally we have demonstrated the applicability of ad hoc integration through the ex-

periment of several life science examples including the example shown in the motivating

www.manaraa.com

15

section. We have demonstrated that the experiments can be recorded in a set of declarative

instructions, and the composition of the declarative instructions can be trivial for life sci-

ence users. Our work is the first to provide an ad hoc integration solution for novice users

to integrate and query distributed Web data sources without any expert help.

1.6 Dissertation Overview

The remainder of this dissertation is organized as follows. Chapter II reviews related

work in heterogeneous database systems and wrapper generation techniques. Chapter III

presents the Remote User-Defined Function (RUDF) technique for modeling form-based

Web data. Chapter IV presents the automated wrapper generation technique for table-

based Web data. Chapter V discusses an automatic wrapper maintenance technique for

table wrappers. Chapter VI discusses query processing techniques for the integration of

distributed Web databases. Finally, Chapter VII concludes this dissertation.

www.manaraa.com

CHAPTER II

RELATED WORK

This chapter summarizes related work of heteogeneous databases integration systems

and sub-systems that will be covered by this dissertation. Since our system is most sim-

ilar in architecture to the ongoing Ariadne approach by Knoblock, et al. [49], an overall

comparison of our work and the Ariadne approach will be given.

2.1 Review of Heterogeneous Database Integration Systems

Heterogeneous database integration has long been the focus of research in the database

research community. The wrapper-mediator architecture has played a central role in het-

erogeneous database systems. Early systems such as TSIMMIS [18], Garlic [41], HER-

MES [1], and Information Manifold [57] provide tools to access multiple information

sources that are available on the World Wide Web in a uniform way. A wrapper-mediator

architecture is adopted in these systems.

TSIMMIS [18] develops a simple Object Exchange Model (OEM) as a common data

model to describe heterogeneous data sources. Information sources are logically converted

to the OEM model by wrappers. Mediators in TSIMMIS are based on patterns or rules

that can be generated semi-automatically from high-level integration descriptions.

16

www.manaraa.com

17

Garlic [41] uses an object-oriented model based on the ODMG standard [16] to de-

scribe data sources. Wrappers are used to encapsulate ODMG objects and their attributes.

Source query capabilities are also provided in the wrappers. Garlic produces execution

plans by optimizing their cost as the sum of local processing costs, communication costs,

and the costs to initiate subqueries and methods.

HERMES [1] uses a logic-based language to integrate heterogeneous data sources.

External programs (domains) are expressed uniformly in a special predicate of the form

in(X, d : f(Args)), which can be interpreted as “execute function f in domain d with

arguments Args and store the set of results in variable X”. A set of cost-based modules are

responsible for the selection of a best execution plans that are based on the statistics cache.

Information Manifold [57] presents a declarative language to describe information

sources and their query capabilities. Query plans are created based on the source descrip-

tions. Information Manifold claims a good scalability with its source pruning algorithms.

These information integration projects provide a strong basis for the wrapper-mediator

architecture in the construction of heterogeneous database integration systems. However,

these systems assume wrappers for heterogeneous data sources are properly provided by

wrapper experts. In real world information systems, wrapper construction is a tedious and

time consuming task. This limitation restricts the availability, scalability and economicity

of the integration systems.

The second generation heterogeneous database systems such as Araneus [60], InfoS-

leuth [10], WebFindit [14], and Ariadne [49], commonly adopt a wrapper-mediator archi-

www.manaraa.com

18

tecture and are more focused on the practical use of the integration system. Typically they

provide data fusing strategies such as domain ontologies, data exchange protocols, and

visual wrapper tools to facilitate integration of distributed data sources.

Araneus [60] aims to introduce tools and techniques to manage Web bases. A Web base

can be viewed as a data repository that manages Web data in a database style. Araneus

models structured data in the relational model and models semi-structured data in an ADM

data model, which shares many properties with the ODMG data model. Wrappers in

Araneous can be constructed with the help of the Editor program [7]. Editor manipulates

semi-structured documents based on two simple instructions: the “search” instruction to

select ranges in a document, and the “cut & paste” instruction to restructure the document.

InfoSleuth [10] aims to mediate semantically and syntactically heterogeneous informa-

tion sources in a dynamically changing environment. InfoSleuth includes a set of network

agents that communicate in a high-level query language KQML [34]. Data sources and the

relationships among the data are subscribed to a domain ontology. An Integrated Manage-

ment Tool Suite (IMTS) provides a set of GUI tools to assist an integration administrator

in analysis and creation of ontologies.

WebFindit [14] proposes the World Wide Database (WWDB) to integrate all Internet-

accessible structured databases. The main purpose is to achieve scalability through an

incremental construction of relationships between Web accessible databases. CORBA

objects are used to register new data sources in an integration database.

www.manaraa.com

19

Ariadne [49] is a planning system for the integration of Web information sources.

Ariadne is an extension of the SIMS mediator architecture [5]. Information sources are

defined with a domain model, where a single terminology is used. The STALKER [6, 49]

tool provides a “demonstration-oriented user interface” for users to teach the wrapper gen-

eration system with a set of examples, and the approach developed by Muslea, Minton and

Knoblock [63, 64] improves the wrapper generation work with active learning algorithms.

Biological data integration systems can be found in K2/Kleisli [25, 84], DiscoveryLink [42],

TAMBIS [8, 80], OPM-based multidatabase [54], etc. None of these systems has tried to

provide a solution for the ad hoc integration purpose. Thus, although they can setup cen-

tralized digital libraries to transparently access distributed data sources, they cannot be

easily adopted by individual researchers with varying on demand purposes.

Heterogeneous database integration has also attracted recent commercial interests in-

cluding the Denodo [66] and DB2 [47] systems. These systems, however, still require

wrapper experts in the wrapper development stage. It typically requires hours of work

to semi-automatically develop a single wrapper, and the developed wrapper has difficulty

coping with the frequently changing Web data. When the wrappers collection grows large,

which is a common situation for an integration system considering the huge amount of

Web data, the requirement to repair invalid existing wrappers can quickly outpace any

manual effort. This difficulty motivates a large body of semi-automatic and automatic

wrapper generation techniques, as will be reviewed in the next section.

www.manaraa.com

20

2.2 Review of Functional Wrapper

Web data modeling and integration using database techniques has been gaining popularity

in recent years. Early research models Web data as static information sources and devel-

ops SQL-like query languages to query Web data. Integration of Web data is much similar

to the integration of traditional multi-databases. As a result, research has been focus on

developing query languages for Web data. The Web calculus proposed by Mendelzon

and Milo [61] is an SQL-like Web query language for querying the Web. A similar lan-

guage LOREL [70] is a lightweight SQL-like object query language for accessing and

querying semi-structured data whose schema is unknown. W4F [74] is a fully declarative

lightweight language to query HTML documents. These research projects do not consider

the active aspects of the Web documents (ASP and JSP like processes) and their relation-

ships with the databases with which they interact.

Recent research models dynamic Web data as sources of limited capability [57]. Some

data sources may only accept a subset of queries. For example, querying all data from a

form-based Web database (such as the GenBank database [65]) is usually impossible. Fur-

thermore, the pattern to access and retrieve information from a Web data source is usually

limited by the supplied inputs in the Web form. The limited query ability of a data sources

is called negative capability. In contrast, some data source has extra query capability such

as join of relations, sorting of data sets, etc. and is called positive capability. The issue

of different source capabilities affecting the query planning and optimization is discussed

in [41, 57, 85]. A general rational is query processing should be pushed to the sources

www.manaraa.com

21

as much as possible for positive capability data sources, while the access pattern should

be limited according to the negative capability of data sources [35, 53, 57, 71]. These

research are related to our work. However, our modeling dynamic Web data as functions

and is different from their approaches.

To our knowledge, the Jaguar [21] project comes very close to the approach we take for

function integration. In this project, the issue of portable query processing is addressed.

One of the main aims of this project is to investigate how a portable database engine can

be developed based on Java user-defined functions. The goal is to exploit the opportunity

of Java UDFs’ portability and allow migration and execution of codes from the client

side to the server side (and vice versa). The disadvantage of this system is that the Java

UDFs must be coded specifically for the Jaguar system. In other words, codes not written

specifically for Jaguar cannot be used. So, it eliminates the possibility of exploiting free-

floating functions on the Internet as part of the database querying.

2.3 Review of Wrapper Generation

Early systems [40, 43] generate wrappers by manually specifying rules for data extrac-

tion. In [43], wrapper implementers provide templates in a high-level declarative language

and actions associated with each template to design wrappers for data sources. Gruser,

Raschid, Vidal and Bright [40] provide graphical interfaces and specification languages to

describe extraction rules for data sources.

www.manaraa.com

22

Manual wrapper development apparently is tedious and error prone since the raw struc-

ture of Web data can be hardly read by human. Approaches by Adelberg [2], Baumgartner,

Flesca and Gottlob [9] and Azavant [75] use graphical user interfaces (GUIs) to assist the

wrapper development. Tools and algorithms are provided for users to semi-automatically

generate wrappers for Web data sources. However, graphical wrapper development is still

time consuming and requires a great deal of wrapper knowledge to effectively operate the

wrapper tools.

Graphical wrapper development cannot remove the involvement of wrapper experts.

People begin to apply machine learning techniques to automatically induce wrapper rules.

The most distinguished work are the STALKER [6, 63] and WEIN [50] approaches.

STALKER uses a semi-automatic method to generate wrappers in three steps. First, the

sources are structured by identifying the tokens and the hierarchical structures of one

or more sample pages. Tokens and the hierarchical structures can be obtained semi-

automatically with a set of sample pages. Users need to correct unexpected tokens or

rules that describe hierarchical structures. Then a parser for the source pages can be gen-

erated automatically and communication capabilities can be added. WEIN [50] uses six

wrapper classes to set up the framework for wrapper induction. A set of Web pages along

with a set of label examples is trained with the six wrapper classes to generate wrappers.

These approaches greatly relief wrapper developers from interacting with the wrapper pro-

grams. However, these approaches still require manually labeling sample pages, which is

www.manaraa.com

23

itself time consuming. As a result, it requires hours’ work to develop a wrapper using

these programs.

In order to reduce the sample labeling work, Muslea, Minton and Knoblock [62, 64]

developed a technique that uses active learning with multiple views to learn labels from

samples. Target concepts are learned independently with different views. Mistakes can be

recognized from views that disagree with the labeled data. The robust multi-view learner

interleaves semi-supervised and active multi-view learning for the problem of incompat-

ible or correlated views. In these techniques only Crescenzi, Mecca and Merialdo [24]

generate wrappers in a fully automatic manner, and all of them require a large set of ex-

ample pages as input.

RoadRunner [24] proposes techniques to remove the necessity of sample labeling. It

automates the wrapper generation process by comparing two example pages at a time.

Patterns are discovered from the similarities and dissimilarities of the two studied pages.

Mismatches are used to identify relevant structures. The training process converges after

a few examples and the computing times are generally a few seconds. The above machine

learning approach has limitation that they depend on multiple sample pages. In cases

where multiple sample pages are unavailable or are difficult to aquire, these approaches

become invalid.

Automatic wrapper generation techniques from a single Web page can be found in

XWrap [58], AutoWrapper [36], BYU tool [32, 33] and Island Wrappers [39]. All these

systems except AutoWrapper and BYU tool generate wrappers from single Web docu-

www.manaraa.com

24

ments with substantial help from the user. Although some of the systems are not fully

automatic, it is instructive and pertinent to compare PickUp with these systems as we too

generate wrappers for table structures from single Web sources but in a fully automatic

fashion.

XWrap uses an autonomous heuristic driven boundary discovery method for the recog-

nition of meaningful objects in a source document. It then encodes the information in

XML and generates meta-data. The heuristics used can be selected by the user to influ-

ence the discovery process of XWrap. But XWrap requires a significant amount of user

input and guidance and often fails to generate correct wrappers, especially when an inap-

propriate heuristic is selected making it an almost manual and trial-and-error based system.

In contrast, PickUp does not require user guidance for non-ambiguous tables1 and hence

can induce wrappers much faster than XWrap.

AutoWrapper on the other hand uses Smith-Waterman algorithm [79] based textual

similarity learning for repeated structure identification. However, unlike PickUp, Au-

toWrapper cannot identify table structures represented without HTML table tags, nested

tables, empty tables, or even single row tables. Finally, the Island Wrapper system re-

quires that users mark an appropriate set of example texts (training set) for it to generate

the wrappers. It uses advanced elementary formal system (AEFS) to automatically learn

wrappers. But the quality and success of the induction depends entirely upon the ability

1A table structure is considered ambiguous if there exists more than one candidate tables in a Web doc-
ument. Users may optionally mark the intended table structure in PickUp to disambiguate the identification
correct structure.

www.manaraa.com

25

of the users to appropriately select sufficiently expressive examples so that the system can

learn patterns correctly. The strength of the Island Wrapper system lies in the fact that it

is based on a formal system and the correctness of the induced wrappers can be reasoned

and predicted.

Finally, the system proposed by Embley et. al [32, 33] (called the BYU tool) takes a

different approach. To be able to construct a wrapper, the BYU tool requires an accurate

ontology designed by expert users manually. Once the ontology is supplied, the system

can map and consolidate records from multiple sources to the ontological schema. The

approach is restrictive in many ways. We discuss several major limitations. First, appli-

cations involving sites with wide variations in ontological structures will extract far less

information. On the other hand, PickUp can perform in applications where accurate on-

tologies are not available or are difficult to construct. Second, this system will not support

ad hoc extraction which is the focus of our approach. Third, the approach is not suitable

for table structures at higher depths. PickUp is not limited by nesting depth of tables.

Reviews of wrapper generation work can also be found in surveys by Eikvil [30] and

Laender et. al. [55]

2.4 Review of Wrapper Maintenance

There is relative little work on the automatic wrapper maintenance problem. This work is

typically done by wrapper experts and turns out to be tedious and error prone. We will have

on a close look at recent research and point out the short-comings of existing methods.

www.manaraa.com

26

The work most closely related to ours is by Lerman et al. [56], where new wrappers

are automatically re-induced when changes in data is detected. The changes are detected

by computing the features of the start patterns, the average number of tuples-per-page, the

mean number of tokens, the mean token length, and the density of alphabetic, numeric,

HTML-tag and punctuation types. The wrapper is re-induced by taking a set of known

positive examples and a set of pages from the same data source to retrain the STALKER

data extraction rules. The shortcoming of this approach is that the wrapper maintenance

task becomes a heavy and time-consuming work with the mixture of supervised and un-

supervised training. Furthermore, the wrapper re-induction process requires a reasonable

collection of both past data and new data set, which incurs a data management overhead

especially when the number of wrappers to be monitored is large. In contrast, our ap-

proach is fully automated and lightweight. Our compact and succinct wrapper verification

rules are encoded with the wrapper rules. The wrapper re-induction process can be carried

out stand-alone without requiring past examples. These advantages allow our wrapper and

maintenance rules to be easily transmitted, stored and processed at any place and can scale

up well when the wrapper collection is large.

Kushmerick [51] introduces a domain-independent wrapper verification algorithm,

RAPTURE, to statistically verify the numeric features of data. Numeric features used in-

clude the digit density, upper-case density, lower-case density punctuation density, HTML

density, fraction of ‘<’ and ‘>’ characters, length, word count and word length. The wrap-

per re-induction problem, however, is not present in the work. Compared to this work, our

www.manaraa.com

27

verification algorithm works on a higher syntax level on word and HTML and thus is more

sensitive to change in HTML data.

There is a set of automatic wrapper generation algorithms such as RoadRunner [24]

and EXALG [4]. One may easily claim that wrapper re-induction is trivial with the ability

to regenerate a wrapper once the old wrapper becomes invalid. However, in the data

integration environment, high-level information such as the correlation of fields from one

source to other sources may depend on the resulting data formats extracted with an original

wrapper, while the regeneration of a wrapper may cause fields to be added or deleted

and the format of the extraction results to be different from that of the original wrapper.

Another shortcoming is that the recollection of training examples is time-consuming and

some changes to the data may affect the quality of a regenerated wrapper when the effect of

the change is over estimated. As a result, the naive wrapper regeneration is inappropriate

for consistent wrapper extraction.

2.5 An Overall Comparison to the Ariadne Approach

Since our integration system is most similar in system architecture to the Ariadne system,

we now compare the techniques used in the two systems. The wrapper technique Ari-

adne develops is the STALKER [6, 49] technique. STALKER works in a semi-automatic

fashion. A user must provide a set of human-labeled examples to the system in order to

generate a wrapper. Although active learning algorithms are provided to reduce the work

of labeling data, the unavoidable human interference limits the scalability of the Ariadne

www.manaraa.com

28

system. In contrast, our automatic wrapper technique will enable software agents to gen-

erate wrappers automatically for new websites, and the system will be able to scale up

easily. The benefit with the scalability is that an integration system can easily incorporate

a large number of data sources, while little extra work is needed for the development and

maintenance of the integration system.

To cope with the frequent changes of Web data, Ariadne has proposed wrapper mainte-

nance techniques to automatically detect changes and repair wrappers. However, STALKER

repairs wrappers by re-inducing data extraction rules with a collection of both past data

and new data sets, which incurs a data management overhead, especially when the number

of wrappers to be monitored is large. Their wrapper maintenance work is a mixture of

supervised and unsupervised training processes, which further impedes the system from

scaling up. Our wrapper maintenance technique will not require storage of past data sets,

and the wrapper repairing process will work in a fully automatic mode. As a result, our

wrapper technique will be more effective for large-scale data integration systems, and data

of more dynamic and heterogeneity characteristics can be integrated.

Both our approach and the Ariadne approach integrate data in a virtual manner (in

contrast to the data materialization approach). In virtual integration, source data is fetched

when a query is submitted and no materialization of data is present. The benefit of a

virtual approach is that it is more suitable for the dynamic nature of Web data, and no

inconsistency maintenance is required. However, inconsistency may originate from data

from multiple sources, which happens in the data mediation stage. We will resolve such

www.manaraa.com

29

inconsistency through an ontology that describes how to resolve the data discrepancies

from different sources.

www.manaraa.com

CHAPTER III

REMOTE USER-DEFINED FUNCTIONS

Similar to most scientific studies, biological analyses demand a great deal of compu-

tations and simulations involving sophisticated tools that are often found geographically

distributed over the Internet. A worldwide effort in genomics research has resulted in a

powerful collection of publicly available sequence analysis tools. These tools often re-

quire specialized local services and domain knowledge to function correctly, rendering

them unlikely candidates for integration into remote database applications. Thus, integra-

tion of heterogeneous “functions” still remains an open problem. Providing a reasonable

framework for seamless integration of these tools with database query engines will enable

application developers to exploit and harness the power of these effective analysis tools. In

this chapter, we present an integration framework for such tools by enabling access to them

in a user transparent way as part of database queries. In our system, such online tools are

abstracted as Remote User-Defined Functions (RUDF). An extended SQL DDL language,

called the Internet Function Definition Language (IFDL), is presented for the specification

and definition of RUDFs. The interface between the database system and the Internet is

implemented using a layer based on a language called the Hyper Text Query Language

(HTQL). The separation of IFDL, DDL, HTQL and SQL DML offers several optimiza-

30

www.manaraa.com

31

tion opportunities and makes it possible to develop an architecture for interoperability of

heterogeneous databases with RUDFs in simpler and more and efficient ways.

3.1 Introduction

For numerous social, political, and ethical reasons, the global effort in genomics research

has produced a vast number of public data and sequence analysis tools – the building

blocks of genome informatics. There has been a serious culture of sharing data and their

analysis tools among researchers across the world. Somewhat standardized tools such

as BLAST [3], FASTA [69], CLUSTALX [82], Sacch3D [73], and so on, are public,

open source and are available online at sites such as the NCBI and Stanford. Researchers

around the world have adapted these tools to suit their needs and made these improved

and enhanced tools available for public use on the Internet. Often, these tools depend

on copyrighted or protected domain knowledge, and on specific hardware configurations

such as cluster computing, super computers or parallel machines. This dependence on

specific system requirements makes it difficult, if not impossible, to replicate the runtime

environment on the user’s part to exploit the power of interesting tools.

When new analysis tools are developed or existing ones are enhanced or adapted, they

encode application, system and mission specific properties. Usually they handle data in

uniform and known formats across platforms within the system.The output of the execu-

tion is relatively stable (constant), and the execution behavior and duration of execution

are predictable. While researchers make these functions available on the Internet, the in-

www.manaraa.com

32

tended use of the functions are usually limited to their internal system. In other words,

these tools allow users to exploit in-house resources given a certain piece of data (DNA

sequences or the likes) and return results of analysis on the input data, usually one piece

at a time.

There has been a great deal of interest in making biological databases interoperable

so that biologists could share their knowledge with greater ease and exploit experiences

of others’ to expedite explorations in science. One coordinated effort in this direction

is the Gene Ontology project of the Gene Ontology Consortium [22]. The goal of this

project is to produce a dynamic controlled vocabulary that can be applied to all eukaryotes

even as knowledge of gene and protein roles in cells is accumulating and changing. Other

projects include TAMBIS [68], European Union Bridge Database Project Consortium [38]

and BioKliesli [77], to mention a few. Most of these projects focus on accessing the data

from remote sites, possibly database systems, for integrated processing with local data.

The analysis tools are assumed to be resident in the local sites. In other words, integrating

remote analysis tools with database querying is not emphasized. In this way, they force

code migration, as opposed to data migration, from remote sites. This approach ignores the

issue of the cost of code migration and adaptation, or the impossibility of such migration

because of not addressing this aspect in their framework for the interoperability.

Most online biological analysis tools are implemented using CGI, Java or ASP type

platforms so that accessing them using Web forms and subsequent navigation of the doc-

ument structures are possible with considerable ease. The complex nature of Web-based

www.manaraa.com

33

forms and their dynamic and interactive nature makes interoperability of these tools ex-

tremely difficult if code migration is not used. This is partially due to the facts that Web-

based forms generally need manual input that is subjective. They produce results using

complex scientific calculations, the output of one process is digested by another process

to generate answers, hierarchical forms may accept inputs from the previous forms, some

outputs are time dependent, some functions are hierarchical or structured, and outputs

may have several pages needing further navigation to assimilate the results. Most wrapper

based applications in interoperable systems for heterogeneous data sources cannot easily

adapt to such complex requirements.

3.1.1 A Motivating Example

Consider an application where a biologist wants to find homologous sequences corre-

sponding to all her sequences stored in a local database from the GenBank database at

NCBI site using BLAST that meet a given similarity threshold (e-value). Currently, there

are two possible ways to accomplish this goal. The biologist can submit her sequences one

at a time (some systems may allow a set at a time submission) to GenBank and receive

the results in an asynchronous mode by e-mail, or via an online mode after a pause which

becomes increasingly longer for subsequent submissions). She can alternatively download

the whole GenBank at her site along with the BLAST program, compile BLAST as a user-

defined function and use it in a suitable SQL like query to obtain her desired results. But

by doing so, she now becomes responsible for maintaining GenBank as a warehouse as

www.manaraa.com

34

new sequences are being added to the GenBank at NCBI site. This essentially means that

she will have to manually monitor the NCBI site for possible BLAST program upgrade if

she wishes to stay current.

Both options have their advantages and disadvantages. The first option – using NCBI

BLAST tool and GenBank data – is extremely slow and manual, but has the least manage-

ment overheard. It works as follows. Each sequence against which a BLAST analysis is

required must be manually submitted to the GenBank through an interface such the one

shown below.

Figure 3.1 The NCBI BLAST input interface

Once the sequence is submitted, a request Id for the submitted analysis is assigned to

the biologist through an interface similar to the one shown below. Along with the request

ID, the system also informs the biologist of an estimated execution time of the BLAST

request.

www.manaraa.com

35

Figure 3.2 The second step: The submission ID and estimated wait time message page

A manual intervention (a mouse click) is required at the end of the estimated time of

execution to finally view the BLAST hits that are displayed as an HTML document similar

to the one shown below. The biologist will have to repeat this process for all her sequences

and collect the results manually for continued processing at her site. In [46], a conservative

estimate for a similar query session was discussed. It was demonstrated that one needs to

visit about 16,000 pages and spend more than 20 hours in wait time alone.

Figure 3.3 The final step: BLAST results

The latter option of warehousing GenBank is equally expensive in terms of manage-

ment and investment as discussed earlier. So, the question remains: is it possible to use

BLAST at the NCBI site as part of a database operation at a remote site without code and

www.manaraa.com

36

data migration? We answer positively in this dissertation and show that we can achieve

identical results by treating BLAST as a remote user-defined function with greater effi-

ciency and ease of use compared to the first approach.

The main idea is as follows. As most analysis tools on the Internet are form-based

and accept several input values to generate a predefined form of output, we can regard

such tools as functions in the sense of conventional programming, and rightfully call them

Internet functions. But in contrast to conventional functions, Internet functions are not

very particular about input and output data types as they are able to resolve some of the

disparities themselves. Hence, in the set up that we envisage, the determination of the

output type is somewhat difficult without some server-side assistance as we plan to use

these functions within a database query engine which usually is serious about the data

types it handles.

We propose that such Internet functions are defined at the database level as a remote

user-defined function with the help of an extension of SQL data definition language, called

the Internet function definition language (IFDL), proposed in this dissertation. The input

output behavior of the Internet function is abstracted through the IFDL expressions and

the function is used as ordinary SQL user-defined function in SQL query expressions. The

interface between the database system and the Internet function is implemented at a layer

called the hyper text query language (HTQL) which is responsible for the execution of

the query and gathering results over the Internet. The HTQL system layer includes a user

www.manaraa.com

37

interface through which the user interacts with the extended database, query processor,

IFDL module, HTQL engine and the local database system.

There are a few technical hurdles to overcome. First, a seamless integration strategy

for the Internet function will be required since functions from multiple sources can be

nested in an arbitrary fashion. Second, specialized techniques must be used to interface

the function defined within a database system and the actual function accessible over the

Internet. Finally, efficient and effective techniques must be developed to store, manage

and manipulate intermediate results from the Internet functions before the final output can

be determined.

Several other system considerations also become important. For example, communi-

cations between systems over the Internet are slow and prone to stalling and breakage.

So, there is a choice of implementing the query processor in batch or pipelined fashion.

There is also a choice of the appropriate time to integrate the outputs of multiple online

functions. We address these issues through our language HTQL which helps bridge the

two platforms – the Internet and the database system – which essentially present a rela-

tional view of Web documents to the users. The trick is now to view function or program

heterogeneity as data heterogeneity and exploit well researched techniques found in the

literature on database interoperability.

www.manaraa.com

38

3.1.2 Organization of This Chapter

The remainder of this chapter is organized as follows. First we introduce a tag tree data

model in section 3.2 for general semi-structured data as a basis for our further discussion.

Then we introduce the concept and definition of remote user-defined functions (RUDF) in

section 3.3. RUDF is based on an extended data definition language called IFDL for SQL,

discussed in section 3.3.2, and a query language called HTQL for semi-structured data,

discussed in section 3.3.3. A semi-automatic HTQL expression generation tool, called

PickUp, for the IFDL statements is presented in section 3.4. Then, in section 3.5, we

introduce a query interface for LifeDB database systems that is currently being developed

at Mississippi State University. Finally, we summarize in section 3.6.

3.2 Tag Tree Data Model for Semi-Structured Documents

Our discussion of semi-structured data is based on a tag tree data model we developed for

XML, HTML, and plain text documents. In this model, a document is composed of items.

An item is a segment of text in a document, which can be an atomic word, a sentence,

or any continous text region in the document. An item is defined with an enclosed start-

tag and an optional enclosed end-tag, presented in the form /‘start-tag’∼‘end-tag’/. The

region in which an item resides starts from the start-tag and ends at the end-tag. When the

enclosed end-tag is missing, the item ends at the end of the document. The text between

the enclosed tags is called a text item. A tag defined naturally in an HTML or XML

document is called a hyper-tag and is presented in form <start-tag>, where the start-tag

www.manaraa.com

39

is also called the tag-name of the hyper-tag and the item it defines is called a hyper-item.

In contrast, a non hyper-tag is called a plain-tag and the item it defines is called a plain-

item. Since any string can be defined as a plain tag, plain-items can only be recognized

at run time based on a query. The tags in a document naturally induces a partial order

among the items that can be used as a basis to enforce a reachability relationship among

the items. Roughly, an item a is reachable from another item b if the start position of a is

within the scope of the item b. The scope of an item is define recursively as the region of

the tag under a parent scope reachable to the item, where the root scope is the document

item. The reachability relationship of items is used to generate the so called item graph of

a document. We illustrate these concepts in the following examples.

Example 1 Consider an HTML document fragment shown below extracted from the doc-

ument in figure 3.6.

DBSOURCE:REFSEQ:
NC 004088.1

This HTML fragment has the following properties. The tags in it overlap in scope. For ex-

ample, the start-tag ‘’ is inside the scope of the ‘<a>’ tag, but the end-tag ‘’

is outside the ‘<a>’ tag and hence overlaps. Considering only hyper-tags, an item graph

of this fragment has two nodes, ‘<a>’ and ‘’, and an edge from ‘<a>’ to ‘’.

However, if we consider two plain tags ‘DBSOURCE:’ and ‘\n’ (such tags are possi-

ble only in HTQL), then the item graph with respect to the tag set {<a>, , ‘DB-

SOURCE:’, ‘\n’} would be the graph shown in figure 3.4.

www.manaraa.com

40

Figure 3.4 Example of an item graph.

Given an item graph, a tag tree can be developed, which essentially captures the navi-

gational possibilities within the item graph. Such graphs are constructed at run time with

respect to a query to be able to accommodate plain tags and also to reduce search space.

Notice that query tag sets are significantly smaller than the document tag sets, and conse-

quently the corresponding graphs relative to query tags are smaller. Also, the relationships

lost in the graphs based on query tags are irrelevant for the query.

For now, assume that the HTQL query we have in mind is “/‘DBSOURCE:’∼‘\n’/”

(syntax of HTQL will be discussed shortly). Then, for the item graph shown in figure

3.4 and the query “/‘DBSOURCE:’∼‘\n’/”, the tag tree shown in figure 3.5 can be con-

structed.

The tag tree graph can be effectively used to browse the document for answering a

query. For example, the query below requests the “REFSEQ:” portion of the DBSOURCE

in the HTML fragment in example 1.

www.manaraa.com

41

Figure 3.5 Example of a tag tree graph.

/‘DBSOURCE:’ ∼ ‘\n’/.<a>.

3.3 Remote User-Defined Functions

Incorporating an arbitrary function into a database system as a user defined function is

by no means an easy task. For successful integration, the function must satisfy type,

parameter and structure requirements in addition to several system-specific format restric-

tions. Once integrated, any alteration in code would necessitate a re-compilation of the

user-defined function. Remote user defined functions have the potential to eliminate any

restrictions of the types mentioned above and would not necessitate a re-compilation in

the event of an alteration in the algorithm it encodes.

Remote user-defined functions differ from conventional user-defined functions in sev-

eral ways. First, they are not compiled as part of the database. Second, they run on another

system and utilize both local and remote resources. Third, they are accessible over the In-

www.manaraa.com

42

ternet and include a communication protocol that they share with the accessing databases

for establishing handshaking at run time. Most analysis tools accessible over the Internet

have a form-based interface and thus, already offer the communication protocol. Hence,

they do not need any additional requirement for integration. However, functions that are

accessible but are not based on Web forms, may need modifications in order to address the

handshaking issue. Modifications required in functions written in some languages can be

extremely simple and trivial, such as in C.

In a different yet similar context, Godfrey, Mayr, Seshadri, and Eicken [37] have

identified three principal ways in which (remote) user-defined functions can be exploited.

• The UDF runs at the server site and within the server process.

• The UDF runs at the server site in a process isolated from the server.

• The UDF runs at the client site.

The Jaguar project addressed the first scenario where the UDF runs at the server site within

the server process. This choice over the other two is reasonable given security and effi-

ciency concerns. In the second choice, however, a significant cost may be incurred every

time a process leaves its process boundary. On the other hand, serious security risks exist

in the third choice when active components of UDFs enter a client site process [37]. A

further drawback is the efficiency and the latency in call invocations since now the server

will have to ship data and function arguments to the client site for processing, often in a

tuple-at-a-time basis.

The concept of remote user-defined functions that we introduce here is a combination

of choices 1 and 3. In our system, one client process and one server process participate

www.manaraa.com

43

in evaluating a user-defined function, which could potentially be a piece of code only

and have nothing to do with a database process. The client process takes the role of a

coordinator and establishes communication with the server site, sends arguments to the

server process, follows required execution steps, gathers intermediate results potentially

from multiple sources and integrates the results. Before integration, the client site process

may store the intermediate results at the client site, but it never accepts codes from remote

sites.

It may appear that by choosing this architecture for RUDF implementation, we are

inviting the drawbacks associated with choice 3 above, but actually we are not. We are

still evaluating the UDF at the server site but giving control of execution to the client site.

Besides, this choice is unavoidable for several reasons. Many Internet functions are simply

computational tools that are not part of any database system and do not access any data

stored in any database whereas others do. For the purpose of abstraction, it is desirable that

we encapsulate the function and view the whole as a complete system in a uniform way.

This is possibly the best way to achieve a non-intrusive interoperability of such functions

and focus only on its input-output behavior rather than its internal architecture or logic.

3.3.1 Using the Internet Functions

Consider a specific case where we would like to find all possible Kenyan fruit fly (Drosophila

melanogaster) sequences from the GenBank database that are 98% similar to the sequences

in a local sequence database called local. Let us examine how SQL, enhanced with remote

www.manaraa.com

44

user-defined functions, enables us to attain this goal effectively and efficiently by circum-

venting the complicated process discussed in earlier sections.

Example 2 A simplified SQL representation of the query is presented below. All the user

has to do is submit this query to the local database query interface shown in figure 3.11.

select b.sequence
from (select get seq(blast(a.sequence))

from local as a) as b
where b.organism = ”Drosophila” and b.source(country)=”Kenya” and

b.e-value ≤ 0.02

In the above expression, get seq and blast are two remote user-defined functions. All

the expressions say is that for every sequence in the local table, perform a BLAST search

in GenBank and obtain the sequences for each BLAST by invoking the get seq function.

Here, we are assuming that the blast function returns the request ID, and once the request

ID is passed to the get seq function, it extracts the output sequences along with the sim-

ilarity scores (e-value) and details of each sequence. A subsequent selection on this set

of sequences collects all homologous sequences of Kenyan fruit flies. Readers may have

noticed that we are viewing the extracted sequences as complex tuples where traversing

the complex data structure of the tuples is possible through sub-structure operator, i.e., ()

in the expression “b.source(country)”.

3.3.2 Internet Function Definition Language (IFDL)

The simplicity of the SQL expression presented in example 2 can be somewhat deceptive

because in order to achieve such a level of clarity and intuitive simplicity, we need to

www.manaraa.com

45

address several more complicated issues. The first issue is the definition of the remote user-

defined functions. In this section, we present a simple extension of SQL’s data definition

language by proposing an Internet Function Definition Language.

To be able to effectively define an Internet function we need to specify the URL where

the function is located, the input parameters and output values with their type restrictions,

and an instruction on the location of the answer in the returned HTML document by the

RUDF. Consequently, an Internet function definition is a 5-tuple 〈φ, υ, π, ρ, �〉 where φ is

the function name, υ is the URL of the function, π is the list of input parameters with

types, ρ is the output value type, and finally � is the output extraction expression. Notice

that the expression in �will be used to extract the answer and will be stored in ρ in the local

database. The expression in � can be any valid query expression in some HTML or XML

query language such as XML-QL [28], XQL [72], UNQL [15], etc. But for the purpose of

this chapter, we will be using a new lightweight and reasonably fast query language called

HTQL. A few salient features of HTQL will be discussed in section 3.3.3 . The process

and syntax of a pair of IFDL function definitions for the blast function is discussed using

the example below.

Example 3 Consider the following RUDF definition for the blast function in the Inter-

net function definition language (IFDL). Recall that a call to the BLAST results in a

form that returns the request ID. And once the request ID is submitted again after an

estimated pause, the answers can be viewed in an HTML document. The IFDL syntax

used for defining the blast function 〈blast, “http://www.ncbi.nlm.nih.gov/blast/Blast.cgi”,

www.manaraa.com

46

query varchar(1000), request id varchar(40),

<form>.<input>3:value〉 is given below.

define function blast
href “http://www.ncbi.nlm.nih.gov/blast/Blast.cgi”
parameters query varchar(1000)
results request id varchar(40)
htql <form>.<input>3: value;

The intuitive meaning of the above definition is as follows. The blast function found

at the URL “http://www.ncbi.nlm.nih.gov/blast/Blast.cgi” accepts a variable length string

up to 1000 characters long and returns a maximum 40 character long ID that can found in

the input field of the first form tag in the returned HTML document. Recall that the HTQL

processor understands the meaning in the expression � and correctly helps extract the ID

from the HTML document.

Similarly, the IFDL function definition for the get seq RUDF can be written as follows:

define function get seq
href ”http://www.ncbi.nlm.nih.gov/blast/Blast.cgi”
parameters rid varchar(40)
results sequence varchar(10000)
htql <pre>.<pre>;

3.3.3 Hyper Text Query Language (HTQL)

Hyper Text Query Language (HTQL) is a semi-structured data extraction language that

can handle XML, HTML and plain text documents. HTQL is used in the IFDL definition

for access and transformation of Internet data. This section provides an overview of its

syntax. HTQL sentences follow a general structure as follows.

www.manaraa.com

47

(document) [pattern expression]
[, (document) [pattern expression]]∗

[{variable assignment}]
[//condition involving variables and constants//]
[(pattern construction)]

Note that the [] notation in the above definition means the expression inside it is op-

tional, and ∗ means zero or more repetitions of expressions. The pattern expression clause

is similar to a path expression in other object-oriented and Web query languages. How-

ever, it is differently formed as we will discuss shortly and uses the so called tag selection

and dot operations. The pattern expression clause can have repeat pattern specifications

from multiple documents; such expressions form a Cartesian product of possible “items”

in the documents involved. Optionally, condition clauses and pattern construction clauses

can be used with pattern expressions. However, whenever a condition clause or pattern

construction clause is used, a variable assignment clause may be used to facilitate proper

reference to the item segments.

There are six basic operations supported in HTQL – (i) the tag selection, (ii) dot opera-

tion, (iii) plus operation, (iv) item attribute and text extraction, (v) collapse operation, and

(vi) a set of extended functions. Every operator in HTQL takes a “sequence of items” as

input and returns a “sequence of items” as output. In this connection, the reader may recall

that a document itself is a sequence of one single item. Furthermore, the tag tree for such

an arrangement is well defined. In the following series of examples, we will introduce

the operators and the functions mostly in reference to the document D1 shown in figure

3.6. The documentD1 has been synthesized from three source Web pages at NCBI – a Map

www.manaraa.com

48

viewer page (at http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/framik?db=genome&gi=250),

a nucleotide page (at http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=22123923), and

a 3-D structure page (at http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/tablik?gi=250) about

Yersinia pestis KIM so that we can effectively explain HTQL features using one source

document. The HTML rendering of D1 on the screen is shown in figure 3.7.

Tag Selection: A tag selection operation returns all text items within the scope of the tag.
The tags that are considered are the ones reachable from the root node of the tag tree
corresponding to the query. There are two forms: t, and /‘p1’∼ ‘p2’/ where t is a
regular HTML or XML tag, and pis are plain tags or text strings. Since plain tags
are defined apriori, a scope is needed as a pair of plain tags and hence the syntax
/‘p1’∼ ‘p2’/. The query (D1) <a> will return the document below:

Yersinia pestis KIM
NC 004088
AE009952
22123923
33
22123924
7
REFSEQ:
 3D Structure
 TaxMap
 CDD

The query (D1)/‘DBSOURCE:’ ∼ ‘\n’/ will return the following document:

DBSOURCE: REFSEQ: NC 004088.1

It is also possible to refer to tags by their relative position. As all tags are indexed in
the tag tree, such operations are easily handled. For example, the query (D1) <a>
1 − 2 will return the following items.

Yersinia pestis KIM
NC 004088

But, (D1) <a> 4 will return only

22123923

www.manaraa.com

49

<html>
<head> <title> Yersinia pestis KIM </title> </head>
<body background = ‘ground.gif’>

Organism: Yersinia pestis KIM

RefSeq: NC 004088
GenBank: AE009952

Total Bases: 4600755 bp

Completed: Jul 29, 2002.

3D Structure:
<table name=table1 bgcolor=white width=400

<tr> <td> Gene </td>
<td>3-D</td>
<td>protein name</td></tr>

<tr> <td> 22123923
</td>
<td>33</td>
<td> initiation of chromosome replication </td></tr>

<tr><td>22123924
</td>
<td>7</td>
<td> regulator for asnA, asnC and gidA </td></tr>

</table>
<p> <pre>
AUTHORS:Deng,W., Burland,V., Plunkett,G. III
DBSOURCE:REFSEQ: NC 004088.1

</pre><p> <hr> <p>
<table name=table2 >

<tr><td align=center>
<FORM NAME=“goto” ACTION=“altvik” METHOD=“GET”>
Search for gene
<INPUT TYPE=text NAME=gene VALUE=“” SIZE=16>
<INPUT TYPE=“submit” VALUE=“Find”></td></tr>

<tr><td>
<table name=table3 width=100% >

<tr><td> 3D Structure
</td><td> TaxMap
</td><td> CDD
</td></tr>

</table></td></tr>
</table>

</body>
</html>

Figure 3.6 Document D1

www.manaraa.com

50

Figure 3.7 Document D1 displayed by a Web browser

Dot Operation: Dot operations can be performed along with tag selection for naviga-
tional purposes. For example, the query (D1)<a>. will return the text item
“REFSEQ:”, whereas the query (D1)/‘DBSOURCE:’ ∼ ‘\n’/. will return the
text “REFSEQ: NC 004088.1 ”.

We must mention here that tag selection and dot operations together help form a
path expression. A path expression identifies an item in a document with the tag
at the end of the path expression. The tag associated with the item thus identified
becomes the current context. The next operation uses the idea of current context.

Item Attribute and Text Extraction: Using this operation, attributes of any tag and its
text content can be accessed. Since tag attributes have names, the values can be
accessed by simply referring to the names. However, the text inside a tag have
no such identifiers. For this reason, HTQL uses a special keyword tx to refer to
the text component of an item in current context. For example, href and tx in the
context of (D1)/‘Organism:’∼‘\n’/.<a> means the strings “/htbin-post/Taxonomy/
wgetorg?id=187410”, and “Yersinia pestis
KIM”. However, such syntax can only be used in the variable assignment, condition
and pattern construction clauses of HTQL sentences. Extraction can be qualified
with path expressions such as /‘Organism:’∼‘\n’/.<a>: tx to mean “Yersinia pestis
KIM”

Plus Operation: A plus operation is used to combine two expressions to produce one
single result. For example the expression (D1) + <i> unions (in sequence)
all emphasized text items with all italics that are reachable from the root of the tag

www.manaraa.com

51

tree graph. Hence, the response of the query (D1) + <i> of document D1

would be the documents “Deng,W., Burland,V., Plunkett,G. III” and
“REFSEQ: NC 004088.1 ”

Collapse Operation: Given an item, the collapse operation returns all of the attribute
values of the item. Hence for the item <name first=‘Bob’ last=‘Barr’> Name of
Employee (D)</name>, the expression @<name>will return ‘Bob Barr’ for some
D.

3.4 Semi-Automatic IFDL Wrapper Generation using PickUp

IFDL and HTQL languages together make declarative specification of form-based Web

data possible. It is, however, still a burden for novice users to have to remember all the

syntax. It is an advantage of our declarative languages that this burden can be eliminated

with a reasonably complex automated tool and algorithms.

In this section, we present a semi-automatic query and wrapper generation system,

called PickUp, for use by mediation systems, such as the LifeDB interoperable database

system introduced in this dissertation, for extracting information from large volumes of

Web data. The system is equipped to visually recognize structures in Web documents and

generate candidate HTQL queries for extracting contents associated with the structures.

A heuristic ranking is used to identify the best candidate query for use by the wrapper or

the query system. It is our contention that the dual operation mode of the PickUp system,

user-guided and fully automatic, makes it an attractive choice for many e-commerce as

well as many non-traditional applications.

The general idea of the PickUp system is as follows. We posit that wrapper gener-

ation is a two-step process in which, given a set of data sources and a query goal, we

www.manaraa.com

52

learn the structural relationships of the document contents that are necessary to respond

to the query and then generate appropriate wrapper codes in the subsequent step. Filter-

ing conditions can be applied to the contents of the documents at run time, or even at the

wrapper generation time, if such conditions are known apriori. To learn wrapping rules in

a semi-autonomous fashion, a learner will need to study several candidate structure queries

(perhaps along with content filter conditions,) corresponding to a query goal and a set of

Web sites for which the wrapper is being designed. This is essentially the same concept

used in ontology research for automatic ontology generation. It can then either generalize

the queries (optimistic approach) or accept the query that returns the most restricted an-

swer (conservative approach) and produce a wrapper. The PickUp system we present here

serves as the candidate query generator for the learning system we have outlined.

The PickUp approach is reminiscent of the Lixto system [9]. In functionality, it almost

parallels Lixto except that PickUp does not demand iterative refinement, and it is capable

of producing a set of ranked candidate expressions for the extraction of the identified data.

In an automatic system, a best candidate can be automatically chosen as the target query.

3.4.1 The PickUp System

The PickUp system is a graphical user interface (GUI) for automatic generation of HTQL

wrappers for HTML or XML data sources. The development platform for our system is

Microsoft Visual C++ on Windows. It has a Web browser control allowing users to navi-

gate to arbitrary Web data sources and browse the site for supervised wrapper generation.

www.manaraa.com

53

It has several sophisticated point, click and mark type region-marking options. The region

marked is submitted as a target for analysis with a button click (the “Find from Selected

HTML” button). The system displays a ranked set of HTQL expressions and the corre-

sponding text that these expressions will wrap as shown in figure 3.8. The ranking of the

expressions is based on the relative cost of computing the expressions. In general, it is

possible to have more than one expression for extracting a document segment in HTQL.

The system ‘recommends’ the best (least cost) expression as the wrapper. In PickUp, re-

gions can be marked in two principal ways – by highlighting a portion in the traditional

way (point and drag), or by highlighting a start and an end point. In the latter case, once

start and end points are marked, PickUp can discover the HTML or XML structure that

generates the particular region enclosed within the structural boundary of the marked text.

This region may not be a regular geometric region on the computer screen in general.

In PickUp, users have the option to choose documents with hyper links or abandon

them altogether by selecting only the visible plain texts. It is also equally possible to

extract browser invisible texts from the documents. The “Attributes” radio button allows

the selection of these choices. Figure 3.8 shows the PickUp system interface in action.

3.4.2 Architecture of the PickUp System

The PickUp system is composed of four modules – (i) a data navigation module for brows-

ing Web sites, (ii) a user-guided HTQL wrapper generation module, (iii) a filtering and

recommendation module for heuristic ranking of candidate wrapper expressions, and fi-

www.manaraa.com

54

Figure 3.8 A snapshot of a wrapper generation session in PickUp

www.manaraa.com

55

nally (iv) a validation and fine-tuning module for error trapping, validation and refinement

of HTQL expression execution. In the following sections, we present a brief discussion on

each of the modules.

3.4.2.1 The Data Navigation Module

The purpose of the data navigation module is to let users bring a sample HTML page

from the Internet directly by accessing the URL. The “Microsoft Web Browser” ActiveX

Control Object has been used to implement this module. Consequently, this module has

capabilities and behavior identical to Microsoft Internet Explorer. Highlighted segments

in any document can be identified using an API in this module, and necessary applications

are designed to realize its functionalities.

3.4.2.2 Wrapper Generation Module

Before we proceed with the discussion on the wrapper generation process and the module

which generates a set of ranked candidate HTQL expressions, we need to formally define a

few concepts based on the tag tree data model and item graphs we have mentioned before.

Definition 11 (Reachable Relationship Set) LetD be a document and T (D) = {t1, . . . , tn}

be the set of all hyper tags inD. A tag ti ∈ T (D) is reachable from another tag tj ∈ T (D),

denoted ti → tj , if there exists an explicit edge from ti to tj in the item graph for D. The

reachable relationship set, denoted ΓD, is all such relationships in the item graph I .

Lemma 1 ΓD can be constructed in O(n2) time.

www.manaraa.com

56

Proof sketch: ΓD can be constructed by comparing each pair of tags in T (D). The total

number of pairs needed to be compared is n(n−1)
2

. Therefore, the time to determine ΓD is

O(n(n−1)
2

) = O(n2).

Definition 12 (Reachable Parents) Let ti be a tag in T (D). Given a tag ti ∈ T (D), the

set reachable parent of ti, denoted PD(ti), is the set {tk | tk, ti ∈ T (D) ∧ tk → ti}. The

set direct reachable parent P ′
D(ti) of ti is the set of all tags tj that are reachable from ti

but not from tags tk, k �= i that are also reachable from ti. In other words, P ′
D(ti) = {tk |

tk ∈ PD(ti) ∧ ∀tm ∈ PD(ti) ⇒ ¬(tm → tk)}.

Lemma 2 For a given ti ∈ T (D), PD(ti) can be constructed in O(n) time and P ′
D(ti) can

be constructed in O(n2) time.

Proof sketch: One can construct PD(ti) by comparing ti with each tag in D. The time

needed is O(n). P ′
D(ti) can be constructed by comparing each pair of tags in PD(ti).

Since the total number of tags in PD(ti) is less than n, the comparison will not exceed n2.

As a result, P ′
D(ti) can be constructed in O(n2).

Definition 13 (Reachable Siblings) Let tag-name(t) denote the tag name of a tag t. For

tags ti, tj ∈ T (D) and a reachability relation tj → ti, the reachable sibling of ti under tj

is ς(ti | tj) = {tk | tk ∈ T (D) ∧ tj → tk∧ tag-name(tk) =tag-name(ti)}.

Lemma 3 Given tags ti, tj ∈ T (D) and tj → ti, the reachable sibling ς(ti | tj) can be

constructed in O(n) time.

www.manaraa.com

57

Proof sketch: The reachable sibling can be constructed by comparing ti with all direct

children of tj , with a cost of of O(n).

Once a region selection is made by highlighting, the position information of the high-

lighted segments is used to map and extract the subgraph in the item graph that corresponds

to that region. In fact, during the construction of the sub graph, the reachability relation-

ships are maintained. Since the reachability relationship set traces a path from a given

node to the root, multiple paths may be found, resulting in multiple candidate wrapper ex-

pressions. For example, if the text “22123924” in figure 3.6 is highlighted, the following

HTQL expression will be generated as all these expressions describe the text “22123924”

equally correctly.

<table>1.<tr>2.<td>1.<a>1
<table>1.<tr>2.<a>1
<table>1.<td>4.<a>1
<tr>2.<td>1.<a>1
<table>1.<a>2
<tr>2.<a>1
<td>4.<a>1
<a>2

3.4.2.3 Algorithm for Wrapper Generation

We are now ready to present the algorithm based on the concepts and complexity re-

sults discussed above. Algorithm find candidates constructs candidate wrapper expres-

sions with respect to the highlighted texts in the browser based on the direct reachable

parents set of the identified tags in a recursive fashion. Essentially, it finds the reachable

paths from an item in a backward fashion to the root by identifying all reachable parents.

www.manaraa.com

58

Consider the highlighted text “22123924” as explained at the outset of this section. The

highlighted tag <a> of “22123924” has the reachable parent set {<td>,<tr>, <table>}.

As such, in order to extract “22123924” with its associated tag<a>, all the HTQL expres-

sions <td>4.<a>1, <tr>2.<a>1, <table>1.<a>2, and <a>2 can be used equally. The

goal of this algorithm is to generate all of these expressions automatically. Furthermore, if

the reachable parent of <td> tag is selected as a basis, for instance, there are various ways

to express this <td> tag. If <table>1.<td>4 and <td>4 are taken as two example forms

for this<td> tag, the<a> tag of “22123924” can be expressed as<table>1.<td>4.<a>1

and <td>4.<a>1 respectively.

Algorithm. (Find all candidates) Given a semi-structured document D with
the reachable relationship set of ΓD, a tag t0 ∈ T (D), algorithm find candidates
generates a set of ranked HTQL expressions corresponding to the tag t0 ∈
T (D).

Function find candidates (ΓD, t0, suffix)
Returns candidates
Begin

Let tp := t0 ;
While P ′D(tp) is not empty

Let the first tag in P ′D(tp) be t1
Let tp has k reachable siblings under t1 before t0;
Let S := tag-name(t0) + to-string(k + 1);
If t1 is not D
Then

Let R := find candidates(ΓD, t1, S);
For each E in R

Append expression E with ”.” and suffix;
Add E to the candidates;

Else
Add S to the candidates;

Let tp := t1;
If tag-name(tp) = tag-name(t0)
Then break;

www.manaraa.com

59

End Function

We now describe in detail how this algorithm works. The algorithm starts by searching

expressions for the <a> tag of “22123924”, where t0 is equal to the <a> and ΓD is the

reachable relationship set 1. The direct reachable parent of <a> is the <td> tag by the

relationship <td>4 → <a>2, where <a> is the second reachable sibling under the <td>

tag. The variables t1, tp, and S are assigned respectively the tags<td>,<a> and the string

“<a>2”. Then the find candidates function is invoked in a recursive fashion to search for

expressions for the<td> tag, which is now variable t0’s new value. In this recursion, simi-

lar to the first recursion, the variables t1, tp, and S are assigned respectively the tags<tr>,

<td> and the string “<td>1”. The recursion continues until t0 is equal to the <table>

tag, t1 isD, and S is “<table>1”, where a candidate result is generated as “<table>1”. As

the recursive call terminates, the candidate expression ‘<table>1.<tr>2.<td>1<a>1’ is

generated on exit. The first recursion loops further and takes a higher level of reachable

relationship by giving variable tp to the parent of one of its element tag. The variables t1,

tp, and S respectively, are assigned the tags <tr>, <td>, and the string “<a>1” in this

loop. This time the expression ‘<table>1.<tr>2.<a>1’ will be generated. The process

continues until all candidates are found.

3.4.2.4 The Filtering and Recommendation Module

Let the cardinality of PD(t0) be d. The maximum branching factor of searching the can-

didate expressions by the algorithm find candidates is thus d, which is characterized by

www.manaraa.com

60

the number of loops in each recursion. The search depth of the problem is also d, which

is represented by the maximum depth of recursions. The maximum number of candidates

generated by algorithm find candidates is thus in the order of O(dd). For example, if

d = 10, it may have 1010 candidates, which is quite prohibitive. Hence, we discuss below

a number of heuristic rules that can be used to filter non-interesting candidates and reduce

complexity.

Rule 1 (Limit Expression Depth) Accept only expression with the smallest

number of dot operations.

This heuristic helps lower the complexity of the search space. Consider two candi-

date expressions ‘<html>1.<body>1. <table>1.<tr>2.<a>1’ and ‘<table>1.<tr>2.

<a>1’. The ‘<html>1.<body>1’ part of the formal expression conveys no useful infor-

mation since almost every HTML page has a <html> tag and a <body> tag. Removing

this part from the expression will result in an expression identical to the latter one. In gen-

eral, a longer expression may contain more useless information than a shorter expression

that computes an identical query.

Rule 2 (Prefer Visual Skeleton Tags) Prefer expressions containing visual

structuring tags such as<table>,<tr> and<div> over non structuring tags such as
,

<body>, etc.

Let us revisit the problem of wrapper generation for the text “22123924”. One pos-

sible interpretation of a user selecting the item “22123924” is that the user is interested

www.manaraa.com

61

in the second hyper link in the sample page. If this interpretation is correct, the expres-

sion ‘<a>2’ best describes the data the user has selected for wrapping. Another possible

interpretation is that the user is interested in the hyper link in the second row of the ta-

ble in the sample page. In this interpretation, the expression ‘<table>1.<tr>2.<a>1’

becomes more meaningful. Generally, the <table> tag, the <tr> tag or the <div> tag

is more powerful in capturing the visual effects of HTML formatted documents. Rule

2 takes advantage of this observation and in PickUp, the recommendation module pays

more attention to such ‘skeleton tags’ in ranking candidate expressions. In contrast, the

<body> tag or the <tbody> for example, can be neglected during the search as such tags

are assumed less interesting. However, this ranking is relative and uninteresting tags may

become interesting in the absence of more interesting tags which guarantee a successful

search under every condition.

Rule 3 (Exploit Application Specific Feature Tags) Exploit and enforce application spe-

cific preferences in wrapper generation.

Exploiting domain specific knowledge can greatly improve the search process. Unfor-

tunately, such knowledge incorporation can only be achieved on a case by case basis. One

specific example is the data sources that are pretty stable and change rarely. Even if such

sources change appearances and contents, the constructs with respect to a wrapper opera-

tion may stay stable. For example, consider the case of the NCBI BLAST page through

which users may submit a nucleotide sequence for homology search against the sequences

www.manaraa.com

62

in GenBank. While the content of this page changes from time to time, the form structure

is almost stable. For this page, the <form> tag and the <input> tag can be treated as

skeleton tags. For this particular case, an expression of the form ‘<form>1.<input>1’ is

preferable over an expression of the form ‘<table>2.<tr>2.<input>1,’ even though they

are identical in functionality. This is because the document may contain only a couple of

submission forms while the table structure may be complex for the display of huge scien-

tific data sets. In some cases, the form names and identifiers may also be used to generate

compact wrapper expressions.

These are some of the heuristics we have incorporated in PickUp to rank the candi-

dates and reduce the search effort. Usually, the top ranking expression is accepted unless

the user selects an alternate expression. The PickUp interface lets users select any candi-

date generated by it, and displays the query result for that expression for the purpose of

verification.

3.5 LifeDB: A Prototype Database Query Interface Based on HTQL and IFDL

3.5.1 The LifeDB Web-based Interface

LifeDB is a database system for life sciences applications that is being developed at Mis-

sissippi State University. In this section, we will introduce the LifeDB system in the

context of RUDFs. We will discuss how they are implemented, the system architecture

and related issues.

www.manaraa.com

63

The LifeDB system has a Web-based query interface through which users write ad hoc

queries and view answers. The interface workspace is mainly divided into three areas –

query editor area, result/display area and query list area as shown in figure 3.9.

Figure 3.9 The LifeDB user interface

Ad hoc queries in HTQL and IFDL extended SQL can be submitted in the edit window.

The results of the execution are displayed in the result area. For every query, a material-

ized view is maintained so that computed answers can be retrieved when needed. Users

must explicitly delete the materialized views when they are no longer needed. Every view

receives a reference number that is hot linked and a simple click on the link brings back

the answer to the result area.

When a query involving an RUDF for which the function definition is already compiled

successfully is submitted (as shown below), results and messages related to the query ap-

www.manaraa.com

64

pear in the result window. Unfortunately, the computation of RUDF can be arbitrarily long

due to Internet delays, traffic volume, site work load, and so on. So to assure the user of

progress and to improve system performance, a pipelined output streaming is employed.

The result pane is refreshed every few seconds for new computations and the output dis-

play is updated with new rows. This way, users receive answers without having to wait

for a long time until the execution completes. It thereby offers an opportunity to abort the

execution if the responses are not desirable.

As shown in the figure 3.10, once the computation is complete, a unique query ID is

assigned to the view and is stored in a local table. The query list shows the query ID with

its list of attribute names picked up from the select clause of the query.

Figure 3.10 A sample LifeDB response corresponding to a query involving RUDFs.

www.manaraa.com

65

3.5.2 System Architecture

The main goal of the LifeDB query interface for remote user-defined functions is non-

intrusiveness at the local as well as remote systems level. Thus, the development of our

interface does not require any modifications whatsoever at the local or remote database

sites. The architecture presented in this section also facilitates non-intrusive future plug-

ins and extensions. We now present the system architecture of our interface.

Figure 3.11 shows a diagrammatic view of the system which includes a user interface,

a query analyzer, query controller, function execution engine, IFDL parser, HTQL engine

and the local database engine. In addition to all the modules, there is also a meta data

repository for various system functions as we will be discussing next.

Figure 3.11 The system architecture for LifeDB query interfaces

www.manaraa.com

66

3.6 Summary and Future Research

The primary focus of this chapter was to demonstrate that Web forms can be viewed as

Internet functions and that these functions can be treated as remote user-defined functions

for a local database to perform interesting queries. We have demonstrated that such an

approach simplifies application development by allowing users to write query expressions

involving these functions without having to worry about interfacing with remote systems

or dealing with low level details. We have presented an architecture for a query interface

that supports a high level abstraction of any Internet function through an extended DDL

called the IFDL. The IFDL, in conjunction with HTQL, is capable of supporting declara-

tive interfacing mechanism for the RUDF in a local database.

We have also presented a semi-automatic wrapper generation system PickUp for un-

structured Web documents. We have emphasized two aspects of this system – (i) it avoids

iterative refinement of the candidate wrappers needed in many systems, such as Lixto, in

order to support scalability, and (ii) it uses a declarative Web query language HTQL as

its wrapper, giving it a sense of platform independence and greater degree of portability.

These two properties were made possible by the use of HTQL as the wrapper language.

We have also presented a brief introduction to the HTQL language and the tag tree data

model on which HTQL is based.

While the research at Cornell (Jaguar [37], Cougar [11] and Predator [76]) addresses

the issue of code migration as a mechanism for portability, we look at the other side of the

issue – portability without code migration. We buy currency, anonymity, independence

www.manaraa.com

67

and interoperability, perhaps at the cost of efficiency. We plan to investigate the execution

latency aspects of our system in our future research and hope to devise ways to speed up the

execution as much as possible. However, we also were able to avoid any type of wrapper

generation needed in most other systems, which is often time consuming, expensive and

demands maintenance.

In our opinion, the contributions PickUp has made are significant and novel since

scalable user guided wrapper generation is now possible, due mainly to HTQL and its un-

derlying data model. As a next step, one can build a rule learner system, a change monitor

system and concept to rule mapping system that can be used in concert with PickUp for

an almost automated wrapper generation and management system for structured as well as

unstructured data sources.

There are other smaller issues such as accuracy of data and early expiration of data. By

nature, Web-based systems do not guarantee the accuracy of the data it presents and data

often expires depending on several factors. For example, it is possible to receive cached

responses from a proxy server, and connections may be interrupted. A robust system must

take these issues into account and deal with them. We plan to address these issues also in

our future research.

www.manaraa.com

CHAPTER IV

AUTOMATIC TABLE WRAPPER GENERATION

Biological data analyses usually require complex manipulations involving tool appli-

cations, multiple Web site navigation, result selection and filtering, and iteration over the

Internet. Most biological data are generated from structured databases and by applications

and presented to the users embedded within repeated structures, or tables, in HTML docu-

ments. In this chapter we outline a novel technique for the identification of table structures

in HTML documents. This identification technique is then used to automatically generate

composite wrappers for applications requiring distributed resources. We demonstrate that

our method is robust enough to discover standard as well as non-standard table structures

in HTML documents. Thus our technique outperforms contemporary techniques used in

systems such as XWrap and AutoWrapper. We discuss our technique in the context of our

PickUp system that exploits the theoretical developments presented in this dissertation and

emerges as an elegant automatic wrapper generation system.

4.1 Introduction

The importance of automatic wrapper generation for biological database interop-

eration has been well recognized in recent research by a number of leading research

68

www.manaraa.com

69

groups [25, 42, 54, 84]. The massive efforts in database integration were motivated by

several important factors including the need for large scale data analysis, distributed re-

source integration in post-genomic era, and to a certain extent by the conditions imposed

by federal grant agencies such as NSF and NIH.

The need for automation can be justified in many different ways. Two major factors

stand out – the lack of technical sophistication of the end-users of such databases, and

by the ad hoc nature of the applications or queries run by them. At the application level,

automation helps end-users to approach distributed resource integration on their own pos-

sibly with the aid of intelligent tools. These tools could generate wrappers in a stepwise

fashion resolving any ambiguities along the way with the help of the user. It was shown

in many research [45, 49, 54, 58] that in such a set up, an intelligent tool can perform well

with minimal help from an average user when faced with system limitations in resolving

ambiguities. It is our thesis that in a nearly homogeneous application domain, such as

genomics, this assumption1 holds true and is supported by experimental evidence.

At the technical level, automation can be justified as follows. First, manual wrapper

generation is a tedious task and prone to error. Despite risks of error, manual wrapper

generation is usually much more effective and reliable. But the cost is usually prohibitive.

Many reliable techniques now exist for concept identification and matching in digital doc-

uments needed for wrapper induction. But the caveat is that there exists situations when

all such techniques fail. Human intelligence can usually be applied to handle such situ-

1The assumption being that automated and accurate wrapper generation with little or no help from the
end-user is possible in homogeneous domains.

www.manaraa.com

70

ations and improve the functionality of the autonomous system. Secondly, when ad hoc

queries over distributed resources are concerned, integration itself becomes practically ad

hoc, and in such situations manual integration or wrapper generation is impractical due

to cost factors. So, a user assisted automatic integration and wrapper generation is highly

preferred if high precision at a throw-away cost can be guaranteed.

Our goal in this chapter is twofold. First to demonstrate that automatic composite

wrapper generation is feasible for homogeneous domains, and second, to present a pro-

cedure to identify table structures in HTML documents. We argue that table structure

recognition is an important ingredient for the generation of any composite wrapper. In an

attempt to convince the reader of the importance of our goals, let us consider an applica-

tion that finds the Homo sapiens genes for the ovarian tissues from The Cancer Genome

Anatomy Project (CGAP) database at NCBI for some cancer research. A search for such

genes using the gene finder tool at CGAP site may display the table shown in figure 4.1.

If we are interested in picking up all the corresponding gene sequences from the Gen-

Bank, we would need to collect all the Sequence IDs in the third column, and read the

sequences from the database. If, however, we are required to collect all the sequences

corresponding to the full-length MGC clones for each of the genes, we need to follow the

links in the CGAP Gene Info column to visit the subsequent pages to collect the acces-

sion numbers, and then the sequences from the GenBank database. Figure 4.2 shows one

such table for the first sequence NM 001614 in figure 4.1. Readers may have noticed that

the figure 4.2 contains yet another table along with other information.

www.manaraa.com

71

Figure 4.1 The set of Homo sapiens ovarian tissue genes found in NCBI CGAP Database

Figure 4.2 MGC clones for the gene NM 001614 shown in figure 4.1

www.manaraa.com

72

In both the pages, identification and manipulation of the table structures are the key

operations. Consequently any wrapper generation algorithm must be equipped to do just

that. It is important to remark here that the apparent simplicity of the HTML documents2

is really deceptive. It is well known that tables in general can be captured in many dif-

ferent ways in HTML, possibly using non-standard techniques. Hence identification of

HTML record structures in general is not a trivial problem, as it will be evident from the

discussions in this chapter.

This chapter introduces a fully automatic wrapper generation system, called PickUp,

for HTML documents based on table structure identification. We organize the presentation

of the techniques involved in table structure identification as follows. In section 4.2, we

introduce the so-called hierarchical repeated structure identification technique for table

structure identification. In this section we discuss relevant theoretical backgrounds and

a method that exploits these concepts for automated wrapper generation. This section

also reports our automatic wrapper induction system called PickUp. We also present two

examples to show the effectiveness of our method over leading techniques. We then finally

summarize in section 4.5.

2It is important to note here that most Web documents, including all the documents at NCBI site, are
still written in HTML for many practical purposes. Hence it is important that algorithms manipulating such
pages are capable of handling HTML peculiarities. We also believe that translation of HTML to XML does
not completely remove the problems associated with HTML documents and hence is not the solution to this
problem.

www.manaraa.com

73

4.2 Hierarchical Repeated Structure Recognition

In this section we introduce the so-called hierarchical repeated structure recognition (HRSR)

method for automated table structure identification. The HRSR method is primarily based

on the observation that records in table structures in Web documents share certain struc-

tural regularity. Intuitively, HRSR technique involves the identification of cells in a con-

ceptual table, a reconstruction of rows or records from fragmented cells and the generation

of a table model from a set of similar records. Cell identification is facilitated by the path

expressions using the hyper text query language (HTQL) [19]. These path expressions are

used also to model the table structures and the wrappers. In the following sections we will

discuss each of these concepts in some details. However, at this point we refer the readers

to [19] for an introduction to HTQL and its associated tag-tree data model3 on which our

subsequent discussions are based.

4.2.1 Structural Relationships of HTML Elements in Tag-Tree Data Model

An HTML document in our tag-tree data model is a sequence of items. Items are of two

types – tag items (HTML tags) and text items. As usual, tags items are of two types – start

tags (or s-tags) and end tags (or e-tags). For any two s-tags s1 (short form of < s1 >) and

3In the context of the discussions presented in section 4.2.1, it is important to remark that the fluidity of
HTML documents and its tag structures do not break down our data model. Hence it is not necessary, as we
tacitly assume in this chapter, that HTML documents are somewhat regular – have matching start and end
tags.

www.manaraa.com

74

s2 in any document d, s2 is said to be reachable from s1, written s1 → s2, if s2 follows s1

and the corresponding e-tag of s1 follows s2 in d.

Thus, by definition, the s-tags in d naturally induce a partial order on all the s-tags

of d – i.e., for any three s-tags a, b, c, a → a, a → b ∧ b → c ⇒ a → c and a →

b ∧ b → a ⇒ a = b hold. Given two s-tags a and c, path(a, c) holds if a → c holds, and

path(a, c) = a.b1 . . . bn.c when a→ b1, b1 → b2, . . . , bn−1 → bn, bn → c.

For any two distinct s-tags s1 and s2 such that s1 → s2 holds, s1 induces a natural

indexing on all s such that s1 → s and s2 = s. For all such s, s1.sk represents the kth

s after s1 such that s1 → s holds. Notice that a.c always holds when a.b.c holds. For

example, when a.b.c.d.c.e holds, a.c1 means a.b.c and a.c2 means a.b.c.d.c while a.c or

a.c0 means all c such that a→ c holds.

Furthermore, it is assumed that every HTML document begins with a special null tag,

or n-tag. So, for any s-tag s, null → s always holds. Since the n-tag is a special tag, for

any s-tag s, path(s) ≡ path(null, s). As such, a.b.c.d.c.e ≡ a1.b1.c1.d1.c1.e1.

A path p is called complete if all its tags are indexed, i.e., a1.b1.c1.d1.c1.e1 is a com-

plete path. The tags in a complete path with the indices are called qualified tags. The

trailing qualified tag of a complete path is called the target tag. For any complete path

p, seq(p) denotes the sequence of tags in p. i.e., for an arbitrary p = a1.b.c1.d.c1.e1,

seq(p) = a.b.c.d.c.e.

Let p1, . . . , pn be a set C of complete paths with identical trailing tags (may differ

in indices). Let 2C be all possible subsets of C such that for each c ∈ 2C , and for all

www.manaraa.com

75

p1, p2 ∈ c, seq(p1) = seq(p2) and all p ∈ c share a common suffix σc of qualified tags.

Each such c is called a family of structurally similar paths.

For a given pair of sets c1, c2 ∈ 2C , c1 is preferred over c2 if the length of every path in

c1 is longer than the length of the paths in c2, and the length of σc1 is longer than length of

σc2 . A set c ∈ 2C is most preferred if there exists no c′ such that c′ is preferred over c.

However, for any c ∈ 2C , c is called a related family of paths if all p ∈ c share

a common prefix πc of qualified tags. For a given pair of sets of related family paths

c1, c2 ∈ 2C , c1 is preferred over c2 if the length of πc1 is longer than length of πc2 . A set

c ∈ 2C of related family paths is most preferred if there exists no c′ such that c′ is preferred

over c.

The problem of automatic table structure identification is thus stated as the identifica-

tion of the largest set S of most preferred structurally similar paths and the largest set R

of most preferred related family paths in document d at item offset4 δ such that the length

of the common prefix of paths in R ∪ S is maximized.

4.2.2 Discovery of Regular Structures

A major assumption we exploit in our system is that record structures in a document share

a structural pattern, and thus all paths to its components (columns) share a common prefix.

To discover such common substructures, we exploit the idea of repeated pattern mining in

4The offset δ is used to discover target table structure using the tag preceding immediately before the
offset. Thus using a zero offset is tantamount to the discovery of structure appearing anywhere in the
document (from the start to end of document). We will take up the discussion on the importance of δ again
in section 4.2.2.1.

www.manaraa.com

76

gene sequences [44]. The difference is that we now mine HTML tag sequence instead of

gene sequence. The entire process is explained in the next few sections.

4.2.2.1 Target Structure Recognition

In a given document d, it is possible that it includes several tables. Every such table struc-

ture (not necessarily represented using HTML table tag) will have repeated tag structure or

sub-trees (captured in the form of paths). With the help of a variant of SeqMiner tool [44],

we discover all repeated patterns and their repeat count in the tag trees of d. Then we rank

all the repeated patterns using a simple functionR. The functionR returns an integer value

for every repeated pattern given the length of the repeat sequence and the frequency of re-

peat. Ranking of repeats (and thus identification of record structure) is somewhat tricky

since unintended identification is possible. For this dissertation we assume that ranking

of a pattern must be high if it has high frequency (many records) and long pattern length

(many attributes or columns). So we use the function R(n,m) = n ∗ m where n is the

length of the repeated pattern and m is the frequency of repeat. It is possible that several

patterns will be assigned the same ranking using this formula. So, we choose the first

pattern as a candidate for the record structure since each one of them is equally valid.

For example, from Figure 4.2 we find the pattern

</td><td></td></tr><tr><td>

has a best repeat rank with n = 7, m = 14, and R(n,m) = 98. It appears in the HTML

fragments such as:

www.manaraa.com

77

</td><td>actin, gamma 1 </td></tr> <tr valign=top><td>

We may find another candidate pattern

<td></td></tr><tr><td>

with n = 5, m = 15 and R(n,m) = 75, which ranks lower than the previous pattern.

The algorithm to find repeat patterns can be simplified as the algorithm Pattern-Miner:

Function Pattern-Miner
Input: A sequence of tags t1...N

Output:
A ranked pattern set P{〈Pattern p, Length n, Repeat m, R(m,n)〉}

Begin
Initialize P to empty;
Let ℘(l) denote the set of distinct patterns of length l in t;
Let S(p) denotes the set of positions a pattern p appears in t;
Let S℘(l) denote the set {S(p)|p ∈ ℘(l)};
Compute S℘(1) from distinct tags (pattern of length 1) in t;
For k = 2 to N

Derive S℘(k) from S℘(k−1) by looking ahead one tag from
positions in each S(p) ∈ S℘(k−1);

For each S(p) ∈ S℘(k)

Let m = count(S(p));
Add 〈p, k,m,R(k,m)〉 to P ;

Return P ;
End

The major computation of this algorithm is in the derivation of S ℘(k) from S℘(k−1),

which cost O(N), and the For loop. Intuitively, the algorithm runs in time complexity

of O(N2). However, pattern positions S(p) can be removed earlier when there is no re-

peats. As a result, the size of S℘(k) decrease exponentially with k and the For loop can

be terminated earlier when set S℘(k) becomes empty. Exploiting this idea, we have devel-

oped an improved version of the algorithm that runs inO(N logN) of both time and space

complexities.

www.manaraa.com

78

In situations where a wrong table structure becomes the candidate, PickUp allows

marking a target table on the HTML document to disambiguate the identification. This

marking of an element, a row, or a table virtually marks the first tag t that precedes the

marked element in d. This t is now used as a candidate for target repeated pattern identi-

fication where t is the leading tag. We then use the techniques described in the following

section to generate path expressions for t and move on to generate a record structure in-

volving t. If t falls within the boundary of the target table structure, our method is guar-

anteed to find the intended structure. However, it is easy to notice that in an unmarked

document, the special null tag is assumed to be the leading tag of a candidate repeat pat-

tern outlined above. It implies that marking is well defined and robust, and its use or

omission does not break down our procedure.

4.2.2.2 HTQL Path Expression Generation

Once the repeated tag pattern is determined (or the leading tag of a candidate pattern is

known through marking), we need to generate the HTQL expressions for the purpose of

wrapper generation. The leading tag of the repeated pattern is used to generate all possible

path expressions in HTQL. Details of HTQL language and a procedure for the efficient

generation of complete path expressions can be found in [19].

For example, the HTML fragment of BC000292, as the best repeat pattern found in

the previous section, has HTQL path expressions of:

<TABLE>3.<TR>1.<TD>2.<table>8.<tr>2. <td>3.<a>1

www.manaraa.com

79

<TABLE>3.<TR>1.<table>8.<tr>2.<td>3. <a>1

These paths represent the leading tag of the BC000292 HTML fragment. The paths

are ranked by criteria that are discussed in [19], and only the top k paths are fed into the

next HRSR steps as candidate paths, where k is a threshold that can be set by programs.

We use k = 2 in our experiments.

The complete paths generation cost time O((p− 1)p−1) [19], where p is the maximum

height of the tag-tree representation of the document. However, we can limit the height for

the paths generation, and most valuable paths can be generated with a height limitation of

7 and can be generated within a second.

4.2.2.3 Structural Relationship Recognition

Notice that the repeated pattern identification alone is not a guarantee that a correct table

structure will be discovered. So, we use the leading tag t of the repeated pattern to generate

all possible HTQL path expressions in which t appears as the trailing tag. By doing so,

we include more candidates for the table structure by inflating the set of path expressions.

However, the table structure identified by the repeat pattern is still included in the set.

The set of paths obtained at this stage is used to compute the set S of most preferred

structurally similar paths as explained in section 4.2.1. And finally, the set S is used

to compute the set R of most preferred related family paths. This is accomplished by

iteratively generating the path expressions as explained in section 4.2.2.2 for each of the

tags in the repeated pattern, and maximizing the most preferred relationship with respect

www.manaraa.com

80

to S ∪ R. The combination of S and R in essence captures the most significant table

structure in d.

For each candidate path p generated from repeated patterns, we then search for the set

of most preferred structural similar paths. We do so by producing variations of an index

of path p to expand similar items (each represents a similar path). An example variation

of the fifth index in candidate path:

<TABLE>3.<TR>1.<TD>2.<table>8.<tr>2. <td>3.<a>1

generates path:

<TABLE>3.<TR>1.<TD>2.<table>8.<tr>0. <td>3.<a>1.

The variated path expression expands 15 similar items in the document. Another variation

in the sixth index as

<TABLE>3.<TR>1.<TD>2.<table>8.<tr>2. <td>0.<a>1

expands 2 similar items. The variated path expression with a maximum expansion is

selected for table generation, and is called a feature path. The prefix in the candidate path

before the variation index is called the feature prefix. The item wrapped by the feature

prefix is called a feature item. In the above example, the feature prefix is

<TABLE>3.<TR>1.<TD>2.<table>8.<tr>2,

and the feature item is an HTML fragment representing the row including ‘BC000292’. A

feature path and a feature item will be found from each candidate path.

Algorithm Feature-Path-Identification finds the feature path from a candidate path.

Function Feature-Path-Identification
Input: A candidate path p, document d

www.manaraa.com

81

Output: Feature path fp, feature prefix fx

Begin
Denote p as a path sequence of t1i1.t2i2. · · · .tnin,

where tk is a tag name, and ik is the index (k = 1 · · ·n);
Initialize x and m to 0;
For k = n down to 1 do

Variate p by replacing ik to 0 (means any index) as p′;
c = number of items in d wrapped by p′;
If c > x then
x = c;
m = k;

Replace im to 0 in p as fp;
Let fx be the path sequence of t1i1. · · · .tmim;
Return fp, fx;

End

From each feature path, we then search for the most preferred related family paths.

We do this by enumerating sub-items of the feature item that include text content or is a

leaf-tag or is an open-tag (a tag that has no corresponding end-tag) and generate a set of

related suffixes. This is described in the algorithm Related-Suffixes-Generation.

Function Related-Suffixes-Generation
Input: A sequence of items I1...N

Output: A set R of HTQL expressions
Begin

Initialize variables R;
Match begin-tag and end-tags in I;
For i=1 to N

If Ii has no corresponding end-tag
or Ii is a leaf-tag
or Ii+1 is a text-item then

Let r = an HTQL expression generated for item Ii+1;
R = r ∪R;

If number of items in R is over a threshold λ then
Break For loop;

Return R;
End

www.manaraa.com

82

In this algorithm, matching of begin-tag and end-tags costs at mostO(m2), where m is

the number of sub-items in the feature item. The generation of HTQL costsO((p−1)p−1),

where p is the maximum depth of the tag-tree representation of the feature item. The

algorithm costsO(m2 +m(p−1)p−1). The values of m and p are typically very small (the

feature item is a small segment in the original document). We further limit the generation

of related items to be less then a threshold λ (30 in our experiment) since larger related

item sets tend to include more useless information. As a result the running time of this

algorithm is small.

From the above feature item, the algorithm generates HTQLs extracting items “2819345”,

“Full Length”, “BC000292”, and “actin, gamma 1”.

Combining the feature prefix and the related suffixes and allowing the variation index

to vary, we get a wrapper that wraps a table of similar and related items, where the prefix

wraps similar tuples and the suffixes wrap related fields.

From this structural relationship recognition phase, we have a set of candidate table

wrappers. The candidate table wrappers will be fed into the next phase for model genera-

tion and table evaluation.

4.2.2.4 Model Generation and Validation

The most preferred sets S and R do not actually account for missing columns in rows,

or missing columns in tables especially when rows are spread over a document space.

This is a consequence of the assumption that the table structures need not be represented

www.manaraa.com

83

using HTML table tags. We essentially allow any regularity to be identified as a table

structure. This means that two candidate rows may differ with respect to a column. So,

we generate a model of the table by conservatively generalizing a row to fit an intended

table structure. This is achieved by adding a column to a row only if that column’s repeat

frequency is more than half of the row frequency. We also accept the type of a column as

the type of the majority of the row types in that column. Finally, we generate a composite

HTQL expression to generate the wrapper. Once the wrapper is generated, it is validated

by recreating each of the elements in the table structure in d by the unit expressions in the

wrapper. If the test is positive for all the elements, the validation is considered successful.

We devise two models to describe the quality of a table wrapper – a tuple similarity

model (TSM) and a field similarity model (FSM). By TSM, we measure the similarity of

tuples by their null fields as ψ. By FSM, we measure the similarity of tuple fields by their

hyper-tags as ω. The ψ and ω are are then combined with the data size of the table to have

an overall evaluation St for a table wrapper.

Each model is described in a pattern concept. A pattern is nothing but a sequence

of symbols. We are considering symbols from the alphabet of ASCII characters, and a

pattern is represented by a string. For example, ‘TNTTN’ and ‘TTTN’ are two patterns.

Two patterns can be aligned for matching characters. For example, patterns ‘TNTTN’

and ‘TTTN’ can be aligned as:
T N T T N

T − T T N

, where character ‘−’ represents a

gap. Each aligned position is in one of the four states: match(M), insert(I), delete(D) and

replace(R), and each state is associated with a predefined cost (called the indel cost). The

www.manaraa.com

84

sum of indel costs at each alignment position is the cost of the alignment. Given a set of

indel costs for the indel states (called a cost matrix), a dynamic programming algorithm

can align two patterns for the minimal cost in time complexity of O(nm), where n and

m are lengths of the two patterns. A more detailed discussion of pattern alignment and

the dynamic programming algorithm can be found in [29]. We now assume readers are

familiar with these concepts.

We define similarity Sim(a, b) of two patterns a and b as

Sim(a, b) = 1 − Cost(a, b)/2l, (4.1)

where Cost(a, b) is the minimal alignment cost with the cost matrix of {M=0, D=1, I=1,

R=2} and l is the length of the resulting alignment.

In the TSM model, each tuple field is described in two states: null(N) and text(T).

The null state describes an empty field and the text state describes a non-empty field. A

tuple is described in a null pattern consisting of a sequence of field states. The TSM ψ is

computed from the formula:

ψ =

∑n−1
i=1

∑n
j=i+1 Sim(Ei, Ej)

n(n− 1)/2
, (4.2)

where n is the number of tuples in the table and Ek(k = 1 . . . n) is the null pattern of the

kth tuple. From this formula, ψ is essentially the average similarity of null patterns of a

table.

www.manaraa.com

85

In the FSM model, items in the HTML representation of a field value are described

in three states: start-tag(T), text(D) and end-tag(e). A field is described in a tag pattern

consisting of the sequence of tag states. The FSM ω is computed from formula:

ωk =

∑n−1
i=1

∑n
j=i+1 Sim(Fki, Fkj)

n(n− 1)/2
, (k = 1 . . .m) (4.3)

where m is the number of fields in a tuple, n is the number of tuples, and Fkl(k =

1 . . .m, l = 1 . . . n) is the tag pattern of the kth field of the lth tuple.

From this formula, ω is essentially the average similarity of tag patterns of a table field.

Finally, we need to compute an overall score St to evaluate a given table. Let r be the

null ratio of fields in the table (number of null fields divided by the number of total fields),

and dk(k = 1 . . .m) be the sum of data lengths (text length in state D) of the kth field of

all tuples. The value of St is computed as:

St = (mn− n +m)(1 − r)ψ2
m∑

k=1

dkω
2
k, (4.4)

where m is the number of columns of a table and n is the number of tuples of the table.

This formula represents the information wrapped by a table wrapper. St captures the table

size, data size and the empty fields of a table. The mn term reflects the size of the table

and the (mn − n + m) term favors columns over tuple numbers. In a table with a large

number of empty fields, the (1 − r)ψ2 term modifies the size of the table. The value of

dk reflects the text data size in a table. In a table with little text content, dkω
2
k reflects the

modified data size.

www.manaraa.com

86

A wrapper with a maximal St score is considered the best table wrapper. Our experi-

mental results show a good performance of this formula for table evaluation.

4.3 Experiment of HRSR

4.3.1 Experimental Results

We ran our experiment on a Dell Dimension 8200 desktop computer with a Pentium 4 pro-

cessor 2Ghz CPU and 1G RAM. Examples were chosen from major biological databases

that return a table of results. Table 4.1 shows the number of attributes and columns that

were correctly wrapped by our automatic wrapper program, namely PickUp. Attributes

were chosen from tags that include non-blank text or special tags such as image tags.

Experiments show that PickUp has no problem recognizing the table content. The wrap-

per induction time is very fast - within half minute for most Web pages we tested. The

wrapper execution time is the average time to execute the generated wrapper against a test

page. Since there is no wrapper learning procedure involved, the execution time is even

faster and usually within one second. The generated wrappers were validated against 20

other pages from the same website. The validation results are promising. For most of the

Web sites, the wrapper can wrap other pages with 100% correct rate. However, for the

Hybridoma Data Bank (HDB) only 80% correct rates were obtained. This is because our

wrapper expression is sensitive to certain structural changes along the path we have se-

lected. For example, when a <table> tag is chosen in the wrapper path prefix, a new table

inserted immediately before the corresponding table in the original document will cause

www.manaraa.com

87

the path index to be invalid. Our path selection algorithm has been designed to choose

robust path prefixes that are insensitive to most data and structure changes. However, in

cases of failure, we are still able to reinduce a correct wrapper from the changed documents

and the structure sensitivity will not compromise the merit of the fast wrapper execution.

In a robust environment, we can use our automatic wrapper maintenance technique that is

discussed in chapter V to get a 100% correct rate for the failed pages.

4.3.2 Comparison to Related Work

We compare our Pickup wrapper generation program to popular wrapper programs includ-

ing XWrap Elite [45, 58], BYU tools [32], Lixto [9], RoadRunner [24], STALKER [6, 49]

and WEIN [52, 50] in Table 4.2. Data for the table was collected from reported results

of each program. Since each wrapper method has a different experimental purpose and

uses different test data sets, it is hard to have a direct and quantitative comparison. As a

result, we only compare them qualitatively considering a set of criteria that most affect

the wrapper construction time. Criteria we use to compare them include ontology creation

time, data labeling time, sample collection time and overall wrapper generation time.

Among these programs, only the BYU tool uses an ontology guiding approach. The

advantage is once an ontology has been created, data can be wrapped according to the

ontology quickly and with high precision. The disadvantage in using an ontology is that it

is difficult to construct. It may take days to construct an ontology, which is still limited by

the seen examples.

www.manaraa.com

88

Table 4.1 Automatic wrapper generation experiment results

Attri- Test Induction Execution Valid-

Web site butes Rows Pages Time (sec) Time (sec) ation

NCBI protein search 5 20 5 0.953 0.078 100%

NCBI genome search 5 20 5 0.703 0.047 100%

NCBI book search 10 26 5 6.297 0.110 100%

NCBI Locus Link 6 50 5 15.594 0.438 100%

BioMedNet 15 20 5 8.625 0.360 100%

Protein Data Bank(PDB) 20 20 5 4.062 0.484 100%

SWISSPROT 4 30 5 2.844 0.047 100%

Hybridoma Data Bank 7 10 5 8.328 0.016 80%

Tumor Gene Database 4 87 5 2.297 0.046 100%

Small RNA database 4 20 5 0.375 0.016 100%

UM-BBD enzyme 4 379 5 17.468 0.422 100%

Protein families (Pfam) 2 20 5 0.594 0.016 100%

www.manaraa.com

89

STALKER and WEIN are similar in that they both take a wrapper induction approach

and uses machine learning techniques to train wrappers from a set of examples. This

approach requires labeling a reasonable number of examples first, which need to be done

manually and is time consuming.

RoadRunner also follows a wrapper induction approach. However, it compares two

samples at a time and can induce a wrapper automatically without any data labeling. As a

result, it can generate wrappers quickly in a few seconds. However, RoadRunner can only

be used when a set of examples similar in page layout is available.

All of the above programs need to collect a set of training examples. Lixto, XWrap

and PickUp instead can generate wrappers from a single sample page. Lixto is still a

semi-automatic wrapper generation tool that requires manually labeling interesting data

from the sample page. It needs a considerable amount of time for a user to master the

wrapper tools first and the wrapper labeling procedure is usually time consuming.

XWrap and PickUp are similar in that they both can automatically generate wrappers

from a sample page and the wrapper generation procedure is highly automated. XWrap

uses five heuristics to generate wrappers automatically. However, it still needs a user to

inspect the generated wrappers and refine data manually from the results. On the contrary,

PickUp generates a table wrapper fully automatically without any human interference. In

case of wrapper generation for an arbitrary data item, PickUp only needs a mark in a web

page and rest of the wrapper generation procedure is fully automated.

www.manaraa.com

90

Table 4.2 Comparison of wrapper construction work

Tools Time Samples

Required

Labels

Required?

Ontology

Required?

Code

Produced

Pickup 0-20 sec 1 No No HTQL ex-

pressions

XWrap

Elite

8-20 min 1 No No Java pro-

grams

BYU Days for

ontology

creation

Samples for

ontology

creation

No Use appli-

cation on-

tologies

-

Lixto 8 hours 1 Manual labeling No Elog

programs

Road-

Runner

0-5 sec ≥2 No No Regular ex-

pressions

STALKER Several

hours

1-9 Manual labeling

for each sample

page

No STALKER

rules

WEIN Several

hours

2-44 A hand-coded

labeling wrapper

for each source

No Wrapper

classes

www.manaraa.com

91

4.3.3 Examples

We now present two examples to demonstrate the capabilities and the effectiveness of the

PickUp system. Figure 4.2 shows a CGAP page containing a table and figure 4.3 shows

the table generated by a wrapper induced by PickUp from the page in figure 4.2. As shown

in figure 4.2, the table structure is represented using table tags and is somewhat obvious

and PickUp had no trouble correctly wrapping this table.

Figure 4.3 The structural table from figure 4.2 recreated by the wrapper

The next example (in figures 4.4 and 4.5) demonstrates that PickUp is capable of effec-

tively identifying table structures even when the structure is not represented using HTML

table tags. This example shows that PickUp is more versatile than XWrap, Island Wrapper

and AutoWrapper in identifying and wrapping table structures.

www.manaraa.com

92

Figure 4.4 A list of books from NCBI represented using loose table structures without

table tags

Figure 4.5 A faithful recreation of the books table in figure 4.4 by the wrapper generated

by PickUp.

www.manaraa.com

93

4.4 Composite Wrappers

Our over-arching goal for PickUp is to be able to generate a wrapper that can iterate over

the rows of a table and navigate to the next page pointed to by one of the cells so that users

do not need to simulate the iteration manually. This can be achieved in two principal ways.

Hyperlinks can be identified automatically if all the links are of interest, or by letting the

user mark a column on the generated wrapper output that contains a hyper link in order

to avoid the generation of uninteresting wrappers. Once identified, the same technology

as applied in the current page may be applied to identify tables in the subsequent pages.

The iteration may be simulated by memorizing the column navigation and driving the

generation of secondary documents using one wrapper inside a loop. However, if the

hyper links point to documents having multiple types of documents, appropriate wrappers

need be applied for each of the hyper links. In this case the composite wrapper definition

must make provisions for customization and use a tree-like execution – recursively or

iteratively. However, the idea of composite wrapper generation is still in its infancy and

remains as an item for future research.

A table wrapper is referred to as a wrapper generated from a single page based on the

wrapper generation algorithm we have discussed so far. We typically use W d to denote a

wrapper generated from a page d, andW (d) to denote the wrapping result of a wrapper for

page d. A composite wrapper is defined recursively from table wrappers. If W d is a table

wrapper generated from page d and Wi(i = 1..m) are wrappers, thenW d{∪i=1..m([i]Wi)}

is a composite wrapper, which means wrapping a page with W d and for each ith column

www.manaraa.com

94

of the result tuples, navigating the hyperlink (if it exists) and wrapping the target page with

Wi, where i = 1..m. Algorithm Composite-Wrapper generates a composite wrapper from

a page d with a maximum depth l.

Procedure Composite-Wrapper
Input: document d, depth l
Output: a composite wrapper W d,l

Begin
Generate a table wrapper W d from document d;
If l = 1 then
W d,l = W d;
return W d,l;

For each column i of the result tuples W d(d)
If column i has hyperlinks then

Navigate to a sample page di from the hyperlinks;
Wi = Composite-Wrapper(di, l − 1);

W d,l = W d{∪i([i]Wi)} including each non-empty Wi;
Return W d,l

End

4.5 Summary

In this dissertation we explored a new technique for automatic wrapper generation for table

structured data in semi-structured documents. The approach relies on several key ingredi-

ents – a formal model of path expression based characterization of tables, repeated pattern

discovery and reconstruction of table structures from fragmented path expressions using

a preference relationship. We have demonstrated through experiments and examples that

our method is more effective and robust than the leading systems that generate wrappers

for table structures in automatic ways.

www.manaraa.com

95

It is possible to show that the wrappers generated by PickUp are more suitable for

incremental maintenance. This is not true for most other systems. We claim that it is

possible to detect changes in target documents and tweak the existing wrapper to adapt to

the new document. This process may be facilitated by maintaining the set of candidate

wrappers we generate during the wrapper induction phase.

The PickUp system will be available online soon. Our future research includes im-

proving the heuristic to correctly identify a target structure without users having to mark

it and to implement the idea of composite wrapper generation.

www.manaraa.com

CHAPTER V

AUTOMATIC WRAPPER MAINTENANCE

Because wrappers are being extensively used in information management systems to

extract Web resources, the maintenance of a large number of wrappers becomes an im-

portant issue. The maintenance task is difficult in that Web resources tend to change

autonomously while little information can be used to detect the change. Continuous usage

of the wrappers, on the contrary, requires the wrappers to function consistently and be

transparent to changes from data sources. The absence of schema information in the Web

source prevents wrappers from reestablishing the correlation between old and new data.

Furthermore, the variation in vocabularies and data values further obstructs the successful

maintenance of Web wrappers. When the number of sites to be integrated is substantially

large, manual maintenance of their wrappers become tedious and error prone. This dis-

sertation presents automatic wrapper maintenance techniques for Web data resolving the

above difficulties in a systematic manner. Based on our infrastructure, a wrapper can detect

and adapt to changes of data automatically and wrapper’s rules are maintained incremen-

tally. As a result, a large wrapper repository can be managed and maintained without

effort. We envision our automatic wrapper technique to be a vital component for seman-

96

www.manaraa.com

97

tic Web technology, where agents need to create and adapt wrappers to data sources in a

dynamic and ad hoc manner with little human interference.

5.1 Introduction

Due to the vast amount of Web data accruing every day, heterogeneous Web database inte-

gration has attracted much attention for years. A wrapper-mediator architecture has been

widely adopted in the integration systems. An important factor that affects the scalability

of integration systems is in the wrapper construction part. This is because that wrap-

per is an irreplaceable communication component between an integration system and the

semi-structured Web data, where little descriptive information about the data is present.

Furthermore the continuous change of data in contents and structures invalidates much

manual effort trying to maintain the schema information proliferated from the base data

during the initial integration stage. As a result, most of the current Web databases inte-

gration systems inherently place a heavy burden both on the wrapper developers and the

system keepers. In the semantic Web context, such a burden is undesirable since ad hoc

integration of a large number of websites is critical for Web agents to survive. The purpose

of this chapter is to show that both the construction and maintenance of wrappers can be

fully automated. Consequently, an integration system can easily scale up while the validity

of the Web wrappers is maintained.

Web databases integration can be found in every discipline nowadays. Both scientific

and commercial institutes are moving to publish data through the Web. On one hand, the

www.manaraa.com

98

publication of information from the Web increases the exposure opportunity of these orga-

nizations. On the other spectrum the vast amount of information on the Web quickly buries

valuable individual organization information given the lack of effective data management

systems. A Web databases integration system is a management system to facilitate the or-

ganization, integration and query of distributed online Web information. The idea comes

from the success of traditional database systems for the organization of in-house file data.

A Web databases system essentially manages the structural view of the semi-structured

Web data and provides transparent access to the Internet data for upper layer information

agents.

A wrapper is a set of data transformation rules that can be used to extract structured

data from semi-structured Web documents. It realizes the Web data access requirement

of a Web database system. The most challenging and interesting category of wrapper is

the HTML data wrapper. An HTML wrapper is interesting in that HTML data are still

a main data media in the Web. Although there is a trend in the XML standardization of

the Web, the unparalleled simplicity and flexibility of HTML data still attracts most non-

professional users. The lack of XML standardization makes the total replacement of exist-

ing HTML data difficult. The ready integration of existing scientific Web data such as the

NCBI genome databases, the PDB protein database and thousands of others, is the main

force driving our HTML wrapper research. HTML wrappers are challenging in that unlike

XML data, where some metadata information and structural constraints are maintained,

the HTML data has no such metadata information and structural constraints. Neverthe-

www.manaraa.com

99

less, many graphical characteristics of HTML data, such as Web forms, Web tables, and

so on, may provide invaluable message for the automatic discovery of information in the

HTML data that has never been exploited. This chapter is focused on the wrapper tech-

nique for HTML data sources. However we believe our technique is general enough for

XML data also.

Consider the NCBI nucleotide Web database. (Here a Web database refers to a collec-

tion of Web data published at a website, in contrast to the Web database integration system

we have discussed so far.) Nucleotide information is searchable from the website with

keywords and the results are formatted in HTML and displayed to users. The search of

nucleotides related to keyword ‘SARS’ has an example HTML of Figure 5.1. We would

like to access information, such as the Accession ID, the nucleotide description and the GI

number of each result entry in a structural fashion as in Figure 5.2, where each tuple rep-

resents an entry of the search result. The transformation from the semi-structural format

to the structural format can be done by a wrapper designed for the NCBI website. Once

the wrapper is designed, further access and query of related Web pages, which may come

from other keyword searches or a future document with the same keyword search can be

straightforward.

Keeping a wrapper is important in contrast to retrieving and extracting Web pages at

runtime in the following aspects. First, runtime-extracted data tend to be more unpre-

dictable and unreliable then the rule-extracted data with wrappers. The predictability and

reliability make it easy for an integration system to cope with dynamic Web data. Sec-

www.manaraa.com

100

Figure 5.1 The NCBI nucleotide database search results

Figure 5.2 A structural view of the NCBI nucleotide database

www.manaraa.com

101

ond, a wrapper may be automatically generated with a special algorithm or manually en-

coded for a specific purpose. An application using wrappers does not need to consider the

method used to construct a wrapper. Such independency and transparency is desirable for

an integration system to adapt to heterogeneous Web data. Third, with a wrapper, general

features of the source data can be learned, encoded and employed to recognize a future

changed document, where a run-time extraction may fail to extract the correct data with-

out such features. However, the above merits of a Web wrapper come with the expense of

maintaining the wrappers continuously.

An integration database needs to keep a large set of wrappers for a large number of

Web data sources. A problem with the current wrapper techniques is that the development

of the wrapper rules is generally onerous and it is even more difficult to maintain the rules

in a timely fashion. In the dynamic Web environment, the frequent changes of data content

and page layouts of the data sources will quickly outstrip any manual effort to maintain a

large wrapper set. Thus automatic maintenance of wrappers becomes an important issue

faced by database researchers prior to resolving the data integration problem.

Automatic wrapper maintenance is difficult in the following respects. First, semi-

structured data provides little hint on changes. The change may be detected when the data

is wrapped and an error result is returned. This may be an empty result or a wrong set of

data. Consequently, change detection is the first task for wrapper maintenance. Second,

there is no schema information within the Web data and the correlation of old data content

and new content is difficult to develop. In commercial Web sites, advertising contents

www.manaraa.com

102

are frequently inserted into a Web page, which causes the interesting contents to move

around in the Web data. The organization of the Web pages may also be changed on

an irregular basis. However, the terminologies and values of the target information are

changing over time, which makes the recognition of the target information difficult when

the Web page changes. Third, to regenerate data extraction rules, the wrapper language

should be powerful enough to re-induce itself. Automatic wrapper maintenance typically

needs to utilize information captured in the old wrapper rules and regenerates substitution

rules in adaption to the changed data. The generation of the new wrapper is carried out by

the old wrapper during the wrapper execution time.

5.2 Automatic Wrapper Maintenance

Our automatic wrapper maintenance system (named WM) is an extension of the PickUp

system [19, 20] developed by Chen, Jamil, and Wang, where techniques are proposed to

detect repeated table structures and generate data extraction rules from HTML pages in

a fully automatic manner. With the database integration background, we will focus our

discussion of wrapper maintenance techniques on relational tables wrappers. Since a table

wrapper can be seen as a superset of a single item wrapper (a table containing only one

item) our technique can be applied to the maintenance of single item wrappers as well,

although some special care may be needed in the single item case.

We are more interested in maintenance of wrappers in a fully automatic fashion, which

means that no any human intervention is required. When a failure of a wrapper is detected,

www.manaraa.com

103

which may result in an empty or wrong result data set, the wrapper repair and improve-

ment algorithms are invoked to adapt to the change. During the maintenance stage, cheap

adaptation algorithms are invoked in case of minor data change and expensive repair al-

gorithms are only invoked after the cheap solutions fail. As a result, our maintenance

technique is efficient. Another distinguishing feature of our maintenance technique is that

it does not require past sample data to retrain the wrapper. Instead, it maintains wrappers

incrementally, requiring only the existing wrapper and the current Web page and improv-

ing the wrapper when changes are detected. This prominent feature allows our wrappers to

work autonomously and be independent of the system that uses the wrapper. The wrapper

rules are encoded in an XML file, which allow the wrapper to be stored and transmitted

on the Web conveniently.

Since our wrapper technique is domain independent, the change of information content

in the Web page generally does not affect the effectiveness of the wrapper. However, if

the structure of the Web page is substantially changed, our wrapper may stop functioning

correctly. Therefore, the main task of wrapper maintenance is to automatically adjust the

wrapper rules when the structural change of Web pages affect the extraction of target data.

Two classes of changes are addressed in this chapter. First, the placement of target data is

changed. This commonly occurs when irrelevant information is inserted or deleted from

the source pages. For example, in Amazon.com, advertising information is frequently

inserted or deleted in the source page, which may cause a wrapper to work improperly.

Second, the record structure of the data of interest is changed. For example, the record

www.manaraa.com

104

structure of some flight agent websites such as the Expedia.com website are frequently

changed.

To detect the changes of data and verify the validation of a wrapper, we use a set of

pattern construction and recognition techniques to compare different data. Briefly speak-

ing, we construct a set of syntax patterns that work at different levels of granularity based

on the sample data. When new data is wrapped, the corresponding syntactic patterns are

compared so that the difference in granularities can be evaluated and the validity of the

wrapper can be verified. These syntax patterns allow our maintenance system to be alert

to changes in different syntax levels. Each pattern is associated with an assessment value

of how well the data should fit with the pattern. By this method, the stringency of pattern

rules can be adjusted. Although Lerman, Minton and Knoblock [56] also use a pattern

recognition method for change detection, the pattern construction and comparison algo-

rithms are different from ours. Our usage of various sequence alignment algorithms is

expected to have a better assessment of the change. Our HTML level syntax pattern is a

higher-level syntax pattern and is not present in [56].

The rest of this chapter will proceed as follows. We will first set up a formal model for

a table wrapper and introduce the wrapper maintenance problem. Then we will present a

brief review of techniques used for automatic wrapper generation, which will be revisited

frequently by our WM system. We will define several patterns as verification criteria for

table wrappers. The algorithm for wrapper verification will be presented followed by a

description of the algorithms used in our WM system to adjust wrappers to different types

www.manaraa.com

105

of data changes. An experiment that was conducted and the experimental results will be

described. Finally we will draw our conclusions and identify future work.

5.3 Formal Model of Table Wrapper and Wrapper Maintenance

5.3.1 Model of Semi-structured Data

A document D can be seen as a collection of items including begin-tag items, end-tag

items and text items. A tag-name is associated with each begin-tag and end-tag. A pair

of begin-tag and end-tag items with the intervening items constitutes a hyper-tag item.

The reachability relationship is defined as the relationship between the hyper-tag item

and the items that are within the begin-tag and end-tag items of the hyper-tag item. The

reachability relationships and the items in a document constitute an item-graph, where

the items are nodes and the reachability relationships are edges. A path is a navigation

sequence in the item-graph that uniquely identifies an item. Two items are similar to each

other if they have paths with a same sequence of tag-names. Two items are related to each

other if they have paths sharing the same prefix.

5.3.2 Model of Table Wrapper

In a document, a set of items that are similar and related to each other, and naturally form

a table, is called a structural table. Intuitively, an HTML table is a structural table, the

rows in the table are similar to each other, and the items in a row are related to each other.

The definition of the structural table is a more general concept then the HTML table. For

www.manaraa.com

106

example, in Figure 5.1 the result entries are not formatted with an HTML table. However,

since the structure of each item is organized similarly, it still meets the requirements of

a structural table. In the previous chapter, we have shown that a structural table can be

wrapped automatically.

In this dissertation, a table wrapper refers to a wrapper that wraps a structural table.

Formally, a table wrapper is a transformation function W : D → R, where D is an HTML

document, and R is a structural table. In the structural table R, each related item set forms

a tuple, and each similar item set forms a column. An item in R is also called a field. In

WM, a table wrapper W is constructed as a composition of p and t, where p is the set of

rules that define the common path prefix identifying the structural table, and t is the set of

rules that define the fields in the structural table.

5.3.3 Model of Type, Schema and Criterion

Each column of a structural table conforms to a schema defined by types. We follow and

extend the type definition for semi-structured data by Arasu and Garcia-Molina [4]. They

define a type recursively as:

1. A Basic Type represents a string of tokens (such as a word or an HTML tag).

2. If T1, · · · , Tn are types, then their ordered list 〈T1, · · · , Tn〉 is also a type representing
a tuple constructor of order n.

3. If T is a type, then {T} is also a type representing a set constructor.

We instead define a type as:

1. A Basic Type T represents a boolean function that takes as input a string of tokens
and returns a boolean value reporting whether the token string is in type T .

www.manaraa.com

107

2. If T1, · · · , Tn are types, then their ordered list 〈T1, · · · , Tn〉 is also a type representing
a tuple constructor of order n. A tuple type reports true if and only if each of its
element types reports a true value.

3. If T is a type, then {T} is also a type representing a set constructor. A set type
reports true if and only if each of its element types reports a true value.

We define a schema differently as a boolean expression of types. A table column

conforming to a schema is said to be constrained by each of the types involved in the

schema.

Example. Consider three example basic types T1 = isalpha, T2 = isdigit and T3 =

nolower and a schema S = 〈T1, {T2}〉∧T3. Type T1 represents any single alphabetic char-

acter, type T2 represents any single digit character and type T3 represents any string that

has no lower-case characters. The set type {T2} represents a sequence of digital characters

and the tuple type 〈T1, {T2}〉 represents a string consisting of an alphabetic followed by a

sequence of digits. The schema S represents a string consisting of an alphabetic followed

by a sequence of digits but not consisting any lower-case characters. A string ‘A12345’ is

an instance of schema S.

Further, we define a criterion as a boolean expression of schemas. A structural table

conforming to a criterion is said to be validated by the criterion. Commonly we allows

the schema of a table wrapper to evolve incrementally over time while keep a criterion in

constant for validation purpose.

www.manaraa.com

108

5.3.4 Problem Formulation

A class of wrappers W is maintainable for a sequence of documents D = {d1, · · · , dn} if

we can find a wrapper wi ∈ W to wraps document di into a relation that can be validated

by a criterion C for any i ∈ {1 · · ·n}. If there is a functionM that transforms the wrapper

wt to wt+1 for any t ∈ {1 · · ·n} then we call functionM a wrapper maintenance function.

The problem of automatic wrapper maintenance is to find a class of maintainable

wrappers W and a wrapper maintenance function M for a sequence of documents D =

{d1, · · · , dn}, so that, for each i ∈ {1 · · ·n}, function M generates a wrapper wi ∈ W

from wi−1 ∈W and wi wraps document di to a relation that can be validated by a criterion

C starting from a known wrapper w0 ∈W .

The documents to be wrapped are typically unknown a priori and the number of doc-

uments may be infinite. Sometimes it is difficult to maintain wrappers for every input

document. Therefore we allow a portion of documents to be invalid while only consider-

ing valid documents. Valid documents are those that can be maintained by the maintenance

function continuously. At a given time t, the ratio of valid documents v and the number of

documents processed t, called the validity ratio, measures the performance of the wrapper

maintenance function. Another possible interpretation of a high validity ratio is that the

input documents are homogeneous in nature.

The basic approach we are taking is to construct a set of basic and composite types for

semi-structured data and develop an automatic wrapper maintenance function. A mainte-

nance function is something like a reverse of a wrapper function – to derive a new wrapper

www.manaraa.com

109

from the data. Usually this reverse process is much more complex and time-consuming

than directly wrapping the data by a wrapper. As a result, we consider different mainte-

nance functions with different costs and combine them for efficiency purpose.

Data type and validation criterion are important factors affecting the effectiveness and

efficiency of a maintenance algorithm. Not only can they validate input data, they can

guide the maintenance function to derive new wrappers.

An important step in the types and criteria construction process is type learning. In a

structural table, each column includes items structurally similar to each other. We expect

that item content will also be similar. Given this expectation, we have devised algorithms

to learn the common feature, called a pattern, from each column and use this common

feature to construct types and a criterion to verify and reconstruct the wrapper.

The relationship of wrapper maintenance components is shown in Figure 5.3. The bi-

directional relationships between the wrapper and data and the criterion and data enables

the renewal of new wrappers upon data changes.

Figure 5.3 The relationship of automatic wrapper maintenance components

www.manaraa.com

110

5.4 Automatic Table Wrapper Generation

Our automatic wrapper maintenance technique depends on the so-called automatic wrap-

per generation method. First, before a table wrapper exists, we need to generate a table

wrapper automatically from a given HTML document. Second, once the source is changed

and a new table position is detected, we need to regenerate the table wrapper. This section

gives a brief review of the wrapper generation algorithm. The detailed algorithms can be

found in [19, 20].

5.4.1 Target Structure Recognition

It is possible that a given document d includes several tables. Every such table structure

(not necessarily represented using HTML table tags) will have repeated tag structures or

sub-trees (captured in the form of paths). With the help of a variant of the SeqMiner

tool [44], we discover all repeated patterns and their repeat count in the tag trees of d.

Then we rank all the repeated patterns using a simple function R. The function R returns

an integer value for every repeated pattern given the length of the repeat sequence and

the frequency of repeat. Ranking of repeats (and thus identification of record structure)

is somewhat tricky since unintended identification is possible. For this dissertation we

assume that ranking of a pattern must be high if it has high frequency (many records) and

long pattern length (many attributes or columns). So we use the functionR(n,m) = n∗m

where n is the length of the repeated pattern andm is the frequency of repeat. It is possible

that several patterns will be assigned the same ranking using this formula. We choose the

www.manaraa.com

111

top r ranked patterns, where r is a threshold one can change, as candidates that will be

further evaluated by the next steps.

5.4.2 HTQL Path Expression Generation

Once the repeated tag pattern is determined, we need to generate the HTQL expressions

for the purpose of wrapper generation. The leading tag of the repeated pattern is used

to generate all possible path expressions in HTQL. A detailed algorithm to generate all

possible paths can be found in [19]. The purpose of this module is to generate HTQL path

expressions given a position s of an HTML page. The complete paths generation algorithm

costs time O((h − 1)h−1), where h is the maximum height of the tag-tree representation

of the document. However, we can limit the height for the paths generation, and most

valuable paths can be generated with a height limitation of 7, and can be generated in

seconds. The generated paths will serve as prefixes for possible table wrappers.

5.4.3 Structural Relationship Recognition

Since each repeated pattern may be involved in a table wrapper, we need to automatically

select a table that best represents the content of the HTML page. Such a table is called

a maximal structural view (MSV) of the page. The purpose of this module is to identify

a repeated pattern that leads to a table wrapper for MSV. We do this by generating tables

from available candidate paths and evaluating candidate tables by an evaluation function.

Specifically, each candidate path is placed into a table wrapper by selecting a prefix of

www.manaraa.com

112

the path as the table prefix, and enumerating atomic and non-empty child nodes under

the node represented by the prefix as the table suffixes. The resulting table wrappers are

evaluated by the number of items wrapped by the wrapper, the similarity of table tuples

and the similarity of table fields.

5.4.4 Performance Analysis of Table Wrappers Generation

The experiments with automatic wrapper generation are promising. For most of the Web

sites with structural table content, for example, data retrieved from NCBI genome and

and protein databases, Protein Data Bank(PDB), BioMetNet and SWISSPROT, the table

wrapper can wrap pages with 100% correctness. However, there are websites where the

table wrapper generated from one page cannot correctly wrap other pages. For example, a

table wrapper for weather report from www.weather.com can only correctly wrap 60% of

other test pages and the wrapper for Hybridoma Data Bank (HDB) has a 80% success rate.

This is because there are certain tables missing in some of the pages. We will resolve this

problem in the rest of this chapter. With our maintenance technique, we will get a 100%

correct rate for these failure pages.

5.5 Pattern Construction

We use two levels of patterns for the representation of data in an HTML page: HTML

syntax pattern and text syntax pattern. The HTML syntax pattern describes the HTML tag

www.manaraa.com

113

sequence in an HTML fragment. For example, the field of ‘AY297028’ in Figure 5.2 is an

HTML fragment of:

 AY297028

This fragment can be described as an <A> tag, followed by a piece of text and an

end-tag of . In WM, this description is represented in a hyper-pattern-string (HP)

of “ADa”, where the ‘A’ is an HP-char stands for the <A> tag, the ‘D’ HP-char stands

for a piece of text and the ‘a’ HP-char for the end-tag . We can see that fields of

‘AY286402’, ‘AJ563470’ and ‘NC 004718’ in Figure 5.2 can all be described in this HP.

In contrast, the field of “SARS coronavirus ZJ01, complete genome” has a different HP

of “D”. By representing such differences, the HP can be used to recognize different fields.

The following table shows the HPs of each field in the first tuple in Figure 5.2.

Table 5.1 The hyper-pattern-strings (HPs) for the first tuple in Figure 5.2

Field HP

1: BDb

AY297028 ADa

Links ADa

SARS coronavirus ZJ01, complete genome D

gi|30910859|gb|AY297028.1| [30910859] D

www.manaraa.com

114

Each HTML hyper tag is assigned a corresponding HP-char. Tags that are considered

significant for field recognition have special HP-chars, such as the ‘A’ and ‘B’ HP-chars

in the above table, since we consider the <A> tag and the tag to be important in

discrimination of HTML fragments. Other significant tags in the current WM include the

<I>, <U>, and <Image> tags. A general HP-char ‘T’ is used to represent any

tags that have no a stand-alone HP-char, such as the
 tag.

HP is a relatively high-level representation of data. It is sensitive to the organization

of hyper tags and is effective for structure recognition of complex HTML text. However,

for relatively plain text where there is little hyper-tag information, HP has its limitations.

For example, in Table 5.5, HP cannot discriminate the ‘AY297028’ field from the ‘Links:’

field, both of which can be represented in HP as ‘ADa’. Similarly the fourth field and

fifth field have the same HP of ‘D’ and cannot be recognized. A text-pattern-string (TP)

is another class of pattern that works at the word level. A TP describes a sequence of

syntax words in a sentence. The TP ignores any tag information in data, and classifies

syntax words into word, number, keyword, data, currency, time, symbol, etc. Each class

is represented in a character (TP-char). For example, a TP-char ‘W’ represents a word,

TP-char ‘N’ represents a number and ‘K’ represents a keyword. Symbols such as ‘:’, ‘;’

and ‘|’ are kept in their original form. For example, the ‘AY297028’ field in Figure 5.2 is

recognized as a keyword, whose TP is ‘K’, and the TP for the ‘Links:’ field is ‘W:’. The

difference in TP provides a way to discriminate the two fields.

www.manaraa.com

115

Table 5.2 The text-pattern-strings (TPs) for the first tuple in Figure 5.2

Field TP

1: N:

AY297028 K

Links W

SARS coronavirus ZJ01, complete genome KWKWW

gi|30910859|gb|AY297028.1| [30910859] W|N|W|K.N|[N]

For a column of fields with different pattern string representations, a single consensus

pattern string is constructed to represent the table column. For example, the first column in

Figure 5.2 can be described as {HP=‘BDb’, TP=‘N:’} since HP and TP describe the first

field of each tuple in the table. For fields with more variations, where each tuple may have

a different HP or TP, a more complex algorithm is needed. For example, for the fourth

column in Figure 5.2, the first tuple has a TP of ‘KWK,WW,’ the second tuple has a TP of

‘KWWK-NKWKW· · ·,’ and the third tuple has a TP that is different from the first two. To

resolve the differences, a multiple sequence alignment (MSA) procedure can be used to

construct a consensus pattern from all possible pattern strings. MSA is extensively used in

the bio-information community for consensus DNA sequence construction in phylogeny

analysis. Finding an optimal MSA is NP-hard. Sub-optimal algorithms are typically used

in applications. WM adopts a progressive MSA algorithm. It has the computational com-

plexity of O(N 3L2) time, where N is the number of patterns to be aligned and L is the

www.manaraa.com

116

maximal length of the patterns. Since we will limit the length and number of the pattern

for consensus pattern construction, the actual cost is bounded to a fixed amount of time.

Algorithm 1 describes the progressive MSA algorithm used for consensus pattern con-

struction. The central part of the algorithm is the use of the dynamic programming al-

gorithm to align a pair of patterns. The most similar patterns with the minimal cost are

merged into a partial consensus pattern. The partial consensus pattern replaces the original

patterns in the patterns set and progressively builds the final consensus pattern. An exam-

ple consensus TP for the fourth column in Figure 5.2 is ‘WWWWKWWKWW’, where

only the first ten TP-char of each TP is aligned.

www.manaraa.com

117

Algorithm 1. Consensus pattern construction
Input: patterns P [1..n]
Output: consensus pattern S
Begin

Initialize weights W [1..n] with a value 1 for each pattern
While there are more than one patterns in P

For each pair of pattern P [i],P [j] in P
Set alignment indel cost for dynamic algorithm:
Cost[match] = 0
Cost[insert] = W [i]
Cost[delete] = W [j]
Cost[replace] = min(W [i],W [j])

Use dynamic algorithm
to compute the alignment cost of P [i] and P [j]

Find the pair P [m1] and P [m2] with a minimal cost
Construct the partial consensus T of P [m1] and P [m2]:

Let s1, s2 be alignment strings of P [m1] and P [m2]
For each position k in s1

Set T [k] as the non-indel char in
{s1[k], s2[k]} with a larger pattern weight.

Assign P [m1] as the partial consensus pattern T
Add weight W [m2] to W [m1]
Remove P [m2] from P
Let S be the final pattern in P

End

5.6 Wrapper Verification

The purpose of wrapper verification is to evaluate the quality of a wrapper W for the

wrapping of a given document D with a set of verification rules Q. The central part of

the verification technique is the creation of verification rules and the method to evaluate

the wrapper validity with the rules. Lerman, Minton and Knoblock [56] use rules of con-

tent patterns, average number of tuples-per-page, mean number of tokens in the example,

mean token length and density of alphabetic, numeric, HTML-tag and punctuation types

www.manaraa.com

118

to evaluate wrappers. The method used to evaluate the wrapper validity is the goodness

of fit method [67], which can test whether two distributions are the same. However, since

the variables are not independent, the method tends to overestimate the test statistic. As a

result, their experiments included only the starting content pattern rule.

We use three categories of rules, the HP, TP and content lengths (CL) rules. A sim-

ple conjunction test of each rule is applied to verify a wrapper; that is, the wrapper is

considered valid for a document only if all the rule conditions are met. The formula is:

V (Q, x) = V (QHP , x) ∧ V (QTP , x) ∧ V (QCL, x), (5.1)

where x is a set of data for the verification, Q is the verification rules, QHP is the HP rule,

QTP is the TP rule, QCL is the content length rule, and Q = QHP ∪QTP ∪QCL.

QHP is defined as a 4-tuple QHP =< PHP , δ, ε, ω > where PHP is the consensus HP

build from examples, δ is the average alignment cost of example fields with the consensus

HP, ε is the cost variation threshold for valid data, and the ω is the number of examples that

support the rule. For example, the second field in Figure 5.2 has aQHP of <‘ADa’, 0.00,

20%, 20>, which means that the consensus HP for the fields is ‘ADa’, the average cost

in the example is 0.00, the threshold of the cost variation threshold is 20% and the rule is

built from 20 examples fields. Given a set of fields x whose consensus HP is HP (x), the

verification function is the following:

V (QHP , x) = {alignncost(PHP , HP (x)) < δ + ε ∗ length(PHP)}, (5.2)

where QHP =< PHP , δ, ε, ω >.

www.manaraa.com

119

For example, in the above example of QHP =<‘ADa’, 0.00, 20%, 20>, if a wrapping

result x has consensus HP (x) of ‘BDb’, then the wrapper is invalid since

V (QHP ,HP (x))

= {align-cost(‘ADa’, ‘BDb’) < 0.00 + 20% * length(‘ADa’) }

= {2 < 20%*3 }

= false

Similarly QTP is defined as a 4-tuple QTP =< PTP , δ, ε, ω > and the verification

function is defined as:

V (QTP , x) = {aligncost(PTP , TP (x) < δ + ε ∗ length(PTP)}, (5.3)

where PTP is the consensus TP of examples and TP (x) is the consensus TP of fields x. For

example, in the fourth field in Figure 5.2, if the TP rule isQTP =<‘WWWWKWWKWW’,

4.85, 20%, 20>, then the first field “SARS coronavirus ZJ01, complete genome” can be

validated by

V (QTP)

= {align-cost(‘WWWWKWWKWW’, ‘KWKWW’) < 4.85 + 20%*10 }

= {5 < 4.85+2}

= true

QCL is defined as a 4-tuple of < Lmax, Lmin, Lavg, ε, ω), where Lmax is the maximal

length item in the example, Lmin is the minimal length, Lavg is the average length, ε is

www.manaraa.com

120

the variation ratio and ω is the number of examples that support the rule. The verification

function V (QCL, x) is defined as:

V (QCL, x) = {L(x) − Lavg < (1 + ε)(Lmax − Lmin)}. (5.4)

Notice all of our verification functions are arbitrarily defined. Applications of the

wrapper can choose their own wrapper verification function. The support ω of each rule

is not used in our current verification functions. However, users can use the support infor-

mation to gain confidence about the validation. The simple variation ratio ε provides an

intuitive way for users to adjust the tolerance of variation rules. Wrapper rules are tested

against a table field. For a document with multiple fields, if the number of fields that can-

not be verified exceeds a certain threshold, the wrapper is judged to fail for the document.

In our WM implementation, the threshold is set as 20%.

Rules are maintained in an XML file. Figure 5.4 shows an example of rules for the

second and fourth column in Figure 5.2.

Figure 5.4 Wrapper verification rules in XML

www.manaraa.com

121

5.7 Wrapper Maintenance Algorithms

5.7.1 Wrapper Adjustment with Candidate Paths

Once a change is detected, the problem is to adjust the wrapper quickly to the change. With

the PickUp automatic wrapper generation tool, a table wrapper is automatically composed

with a path prefix p and a schema suffix t by analyzing the structure of the document.

The path prefix p represents the best candidate path that can target the structural table

for the table wrapper in a document. It is selected from a set of candidate paths with

some evaluation function and is expected to be insensitive to most content and structural

change in the document. For example, the table wrapper for Figure 5.2 can have candidate

path prefixes ‘<DL>’ and ‘<P>2.<DL>’. The first prefix ‘<DL>’ is insensitive to any

tags other then a ‘<DL>’ tag that may be inserted or deleted from the document, while

the second prefix ‘<P>2.<DL>’ is insensitive to any irrelevant <DL> tags that may

be inserted or deleted before the second <P> tag. However, each of the prefixes has its

limitation and will fail upon certain changes. For example, irrelevant <DL> tags that are

inserted before the structural table may cause the first path prefix ‘<DL>’ to fail and the

removal of the a <P> tag in the document may cause the path prefix ‘<P>2. <DL>’ to

fail.

The most common situation where a table wrapper becomes invalid is when the place-

ment of the structural table in a document changes, and the structural table remains un-

changed. This situation is frequent when advertising information is inserted or removed

www.manaraa.com

122

from the document on an irregular basis. One solution for such changes is to use candidate

path prefixes that are insensitive to the change.

Since querying with a wrapper is cheaper than reconstructing a wrapper by orders of

magnitude, this solution can avoid costly wrapper reconstruction procedures and quickly

retarget the structural table. The wrapper rules will not be modified when a candidate path

is validated. Thus occasional changes of a document will not affect the wrapper in general.

5.7.2 Re-targeting the Table

Not all movement of a structural table can be adjusted with the help of candidate paths.

When there are significant portions of data inserted or deleted from the table, or the Web

page on which the structural table resides incurs a major restructuring, candidate paths

may not be able to adapt to the changes. For example, when the stock quote information

is moved from the top of the page to the bottom of the page, candidate paths may fail to

target the correct table. In this case, the schema prefix needs to be regenerated.

The first step for the regeneration of the schema prefix is to identify the position of

the target table. The re-targeting task is difficult when the Web document is complex and

multiple tables of different contents co-exist on the same page. Since our WM technique

does not depend on a predefined application domain, and data in the Web page may change

independently, it is impractical to understand the information in each structural table and

then correlate the new structural tables with the old ones. We are therefore taking another

approach - memorizing some ‘signatures’ in the original structural table. The idea is to

www.manaraa.com

123

find the repeating patterns in the original structural table, and use the repeating pattern to

recognize the target table in a new document.

For example, the first entry of the search result in Figure 5.1 , as shown in Figure 5.5,

has a continuous sequence of tags “<dl><dt><table><tr><td><input> . . .”, which

is also present in the other entries. We expect this sequence also to be present in the new

documents. With a local alignment of the signature sequence with the tags sequence of

the new document, we can find out the most likely position in the new document that is

similar to the signature sequence.

An algorithm to search for a similar subsequence from a long sequence is the local

sequence alignment (LSA) algorithm [29]. Local alignment is typically used in gene se-

quence analysis to determine if a segment of gene sequence is a subsequence of another

longer sequence. The most commonly used algorithm is a dynamic programming algo-

rithm. However, it is different from the dynamic programming algorithm used to align two

complete sequences (the global sequence alignment, GSA) [29]. A dynamic programming

algorithm constructs a score matrix stepwise based on a given cost matrix. Each score in

the matrix represents the best alignment cost of a pair of positions of the two sequences.

The difference between the LSA and GSA is in determination of the overall score of the

alignment and the trace back algorithm to get the alignment. GSA uses the score at the

end of the alignment sequences as the overall alignment score and traces back from that

end position. LSA, in contrast, searches for the best score in the score matrix and traces

back from that position. The best score position is considered the most similar position of

www.manaraa.com

124

the two sequences in our WM signature sequence finding. We will assume the reader is

familiar with the dynamic programming algorithm, and the details of the algorithms will

not be further discussed in this dissertation.

5.7.3 Regenerate Wrapper Fields

When the record structure of a structural table changes, the wrapper may fail to verify

all fields of the table. When the majority of the fields are verified, we infer that the table

has incurred minor changes in record structure and that the unverified fields have be moved

inside the record structure. Therefore, it is the WM’s task to find new wrapper rules for the

restructured table fields. WM copes with this situation by regenerating all related fields

from the record structure and matching the unverified fields with the newly generated

fields. To re-generate all related fields, we simply build wrapper rules for every item that

is enclosed with a tag within the first structural record tuple and test if the rules are valid

for other tuples. The matching of old fields and new fields is done through the comparison

of their consensus HPs and TPs. The formalism is listed below. With the formalism, the

similarity of two fields is the product of their HP similarity, SHP , and the TP similarity,

STP . SHP is defined as the ratio of the matched HP-chars to the average length of the two

consensus HPs, and STP is the ratio of the matched TP-chars to the average length of the

two consensus TPs.

S = SHP ∗ STP ,

SHP = 1 − 2 ∗ align-cost(PHP1 , PHP2)/(L(PHP1) + L(PHP2))

www.manaraa.com

125

STP = 1 − 2 ∗ align-cost(PTP1 , PTP2)/(L(PTP1) + L(PTP2))

The fields with a highest S value are considered the best matched fields. If the S score

is higher than a threshold s (0.3 in our WM experiments), then the field wrapper rules

and the verification rules are updated according to the new field. Once a target item is

identified, the wrapper rules wrapping the item can be generated automatically with our

automatic wrapper generation technique.

An advantage of wrapper repairing is that wrapper rules can be learned with imperfect

samples. With more data being wrapped, a wrapper can encode more general information

about the data source and become more robust. The benefit is that our wrapper generation

algorithms requires only one Web page to learn the wrapper rules; this is important for the

ad hoc integration of a large number of Web sources because the sample collection process

is sometimes time-consuming. Another benefit is that our wrapper-learning algorithm does

not require the samples to be distributed evenly in a domain. Characteristics of data are

learned incrementally and occasional noise in the data can be adapted at runtime. This

approach is practical considering the dynamic nature of Web data.

5.8 Experiment and Results

We developed a scheme to test the correctness of our WM technique that uses a wide

variety of Web documents. The main purpose was to test the ability of WM to recognize a

change, the effectiveness of table re-targeting, and the correctness of field regeneration.

www.manaraa.com

126

The experimental data sources include NCBI nucleotide database search results, Ama-

zon.com book search results, Weather.com weather reports, and Lycos.com stock quotes.

These data source were selected for the following reasons: 1) they are popular experi-

mental data for wrapper experiments; 2) interesting data is organized in a structural table

format that is the main focus of our WM technique; 3) they come from different application

domains; 4) the Web page and the table structure organizations are reasonably complex;

and 5) results change with different keywords. Furthermore, each has some special fea-

tures: the NCBI results are not organized in an HTML table; the Amazon results have a lot

of related information encoded in a same page; the Weather results have a large number

of recursive tables; and the Lycos results have fields that are similar. The automatically

generated wrappers include the fields listed in Table 5.3.

Table 5.3 Data fields in the wrapper maintenance experiment

Website Example fields Fields

NCBI AccessionID, description, GI 7

Amazon Book title, authors, cover type, image 8

Weather Date, image, description, temperature 6

Lycos Symbol, last price, change, volume 17

Because there are relatively few major changes to the data sources, there will not be

enough data for testing the correctness of our WM algorithms even if we spend a lot of

www.manaraa.com

127

time monitoring and collecting all the changes. More importantly, it is difficult to prove the

correctness of WM algorithms with a set of real changes since changes in one data source

tend to be localized and may not reflect changes that may happen in other unstudied data

sources. Therefore, we manually enumerated possible changes in a Web page and created

artificial test sets based on the real example pages.

To conduct the following experiments, we set the field validation threshold to 80%,

which means that if 80% of the fields are verified, the table wrapper is considered valid.

On the contrary, if less than 80% of the fields can be verified, a set of wrapper maintenance

algorithms will automatically be launched to improve the wrapper. If no improvement can

verify 80% of the fields, then the wrapper is declared invalid for the new data. The mod-

ification of Web pages is done through the HTQL query language [19]. The experiments

were conducted on a DELL Dimension 8200 computer with 500M memory and 2.0G cpu.

The first experiment tested the ability of WM to recognize a move of target tables and

to re-target the table. For this purpose, we cut the target table from a source Web page,

evenly selected n non-tag positions in the Web page, and inserted the table back into these

positions. As a result, we had a test dataset including n changed documents for each test

page. The original wrappers were then applied to these n changed documents. Table 5.4

shows the wrapping result. From these results, we can see that WM can recognize all the

changes and can repair almost all the wrappers correctly.

The second experiment tested the ability of WM to recognize a change in a record

structure and repair wrapper fields. For this purpose, we manually selected two columns

www.manaraa.com

128

Table 5.4 Wrapper maintenance results for position changes

Website Change detected Validity Time(s)

NCBI 100% 100% 0.45

Amazon 100% 100% 2.5

Weather 100% 100% 1.3

Lycos 100% 99.2% 10.0

in the structural table and swapped their positions in the Web page. In this way, we had a

set of test documents different in the record structures by two fields. The original wrappers

were applied to these changed documents, and the results are shown in Table 5.5. From

the results, we can see that WM can recognize most of the changes. For the Weather

data, all changes were detected and repaired. A portion of changes were not detected

from the other datasets since the wrapper was still considered valid for the data. Most of

the changed data can be wrapped after the maintenance procedure. Weather and Lycos

wrappers were perfectly maintained for all the changes. Amazon and NCBI data had a

lower maintenance rate. Still, over 85.7% of the changed documents remained valid after

maintenance.

The third experiment combined effects of position movement and record structure

changes. For this purpose, the table was cut out from the source page and two of the

table columns were swapped by positions. The changed table was then inserted into the n

non-tag positions that were evenly selected from the Web page. The resulting pages were

www.manaraa.com

129

Table 5.5 Wrapper maintenance results for record structure changes

Website Change detected Validity Time(s)

NCBI 85.7% 95.2% 0.78

Amazon 75% 85.7% 0.56

Weather 100% 100% 0.57

Lycos 86.1% 100% 1.2

different from the original page both in position and in record structure. The original wrap-

pers were applied to these changed documents and the results are shown in Table 5.6. The

maintenance results are very similar to those of the previous experiment; all the Weather

data and Lycos data were determined to be valid after maintenance, and over 88% of the

Amazon and NCBI data were valid after maintenance.

The maintenance time is commonly a few seconds. A position change typically costs

more time to maintain than only a record structure change. This is because the retargeting

table operation is much more costly than an adjustment with candidate paths or a regen-

eration of wrapper fields. The difference is significant for tables of homogeneous fields

such as the Lycos data and minor for table fields of different structures such as the NCBI

data. This demonstrates that the combination of different verification criteria is effective

for efficient wrapper maintenance.

www.manaraa.com

130

Table 5.6 Wrapper maintenance results for combined table position and record structure

changes

Website Change detected Validity Time(s)

NCBI 100% 95.2% 0.42

Amazon 100% 88.8% 1.0

Weather 100% 100% 1.54

Lycos 100% 100% 10.4

5.9 Conclusion and Future Work

We identify and develop a framework for the problem of automatic wrapper maintenance.

This problem occurs in any large scale heterogeneous database integration system and has

received relatively little attention. Our maintenance model as a combination of wrapper,

criterion and data is novel and effective in maintaining a class of wrappers for a continuous

set of semi-structured data. The resulting WM system does not need to remember past

examples, and can wrap data with maintainable wrappers in a few seconds. We have

developed a comprehensive method to verify the effectiveness of wrapper maintenance

algorithms. We showed in experiments that multiple criteria can improve the efficiency

of wrapper maintenance. We have employed a variety of sequence mining algorithms and

demonstrated their effectiveness in semi-structured data analysis. As future work, we will

apply our maintenance methodology for other wrapper classes, for example, single item

wrappers.

www.manaraa.com

131

<dl>
<dt>

<table>
<tr><td>

<input name=uid type=checkbox value=30910859>
1:
AY297028

</td>
<td align=“right”>

Links

</td></tr>
</table>

</dt>
<dd>

SARS coronavirus ZJ01, complete genome

gi|30910859|gb|AY297028.1|[30910859]

</dd>
</dl>

Figure 5.5 An NCBI record entry in HTML

www.manaraa.com

CHAPTER VI

THE METEOROID AD HOC INTEGRATION SYSTEM

As scientific data, tools, and services continue to populate the Web, scientific anal-

yses must rely on data and tool resources scattered over the Web. These Web data are

mainly designed for human navigational purposes. In order to exploit these Web data for

more complex scientific computing tasks, it is important to make existing distributed Web

resources not only accessible but also manageable to scientific people and applications.

However, current Web data management approaches are brittle and unreliable due to the

high degree of data heterogeneity, leading to an extremely high cost for scientists to col-

lect and compute distributed data. We present an ad hoc integration approach to solve this

problem. Ad hoc integration allows scientists to identify interesting data from the evolv-

ing Web pages independently, allows online heterogeneous data resources to be collected

and manipulated conveniently, and allows distributed data computing to be designed and

scheduled properly. Ad hoc integration provides a convenient and robust database envi-

ronment for scientists to conduct Web data analysis tasks without resorting to complex

computer infrastructures or consulting experts frequently. We have developed a Meteoroid

ad hoc integration management system that meets these requirements. Meteoroid makes

132

www.manaraa.com

133

it possible for individual scientists to easily utilize available Web resources in a database

envitonment for daily data analysis purposes.

6.1 Introduction

As scientific data, tools and services continue to populate the Internet, scientific data anal-

yses must rely more and more on online-available, distributed and heterogeneous data

from the Web. These distributed Web data may contain invaluable information curated by

domain experts, analyzed by specially designed software and tools, and sustained continu-

ously by collaborating teams. However, it is still difficult for scientists who must excavate

data from Web pages constantly, streamline data accesses to multiple sources, and combine

data from distributed sources. This is because Web data usually lack fixed schemas and

are typically changing constantly in both information content and data formats. Streamlin-

ing multiple data accesses typically requires transforming data from one format to another

and non-trivial post-processing of collected data. Doing these tasks manually is not only

time consuming but also error prone, posing a challenge for researchers in the field to fully

exploit the wealth of information available on the Web.

On the other end of the spectrum, for practical reasons, biological scientists have been

accustomed to simple and convenient personal storage systems and data formats such as

Access databases, spreadsheets, plain text files and HTML files to record biological exper-

imental data. Such data is exchanged frequently between labs, leading to an unmanageable

number of data sources and formats. An increasing interest in computing in-house data

www.manaraa.com

134

with online biological tools such as sequence alignment tools, BLAST searches, structure

analysis tools, etc., makes this problem even more important. Biologists need a way to

effectively collect, combine, and utilize the explosive data, tools, and services consistently

for daily data analysis purposes.

Database management systems (DBMSs) have long been successful in providing a

consistent data management platform for non-trivial data processing and for diverse data.

Providing a reasonable data management framework for individual scientists to effectively

integrate and query distributed information sources on demand has become another chal-

lenge for information and databases integration researchers. We identify the following

challenges:

• Web data sources are mostly semi-structured and are evolving quickly, making it
difficult for novice users to quickly identify desired data and record data accesses;

• A consistent approach to management of both traditional relational data sources and
Web data sources is lacking. Web data sources have unique features such as semi-
structured format, orientation to being used for navigation, dynamic generation, etc.;

• A full-fledged data integration framework able to succintly express Web data, ro-
bustly maintain Web data, and unconventionally schedule, process, and mediate ad
hoc integrated Web data has not been established.

As evidenced by prior research such as TSIMMIS [18], HEMMER [1], Information

Manifold [57], Ariadne [49] and a number of other projects, a database approach to re-

solve data heterogeneity issues for scientific data interoperability appears to be the best

approach. However, existing systems have not addressed the issues mentioned above. The

following problems still exist:

1. Wrapper development is still challenging for users of existing systems. A wrapper is
a basic component in a wrapper-mediator-based system to transform heterogeneous

www.manaraa.com

135

data into a unified data model. Existing wrapper development methods either depend
on an expensive training procedure with a considerable number of data samples or
they require a wrapper expert to develop complex wrapper rules, posing a great
burden to novice users. Moreover, the fast-evolving nature of Web sources quickly
invalidates most manual or semi-manual efforts.

2. Existing systems treat Web sources as standard external views but fail to exploit
Web-oriented properties Web-oriented such as navigational data exploration, pipelin-
ing data feeding, and session-dependent data retrieval. A scientific user also tends
to add additional data dependency rules for data processing. A flexible framework
to manage Web data sources to meet the variety of requirements is lacking.

3. Traditional query processing techniques rely heavily on join operators for query
optimization purposes. These are mostly expensive operators and become awkward
when dealing with Web sources with a large number of join attributes and a large
number of participating views.

The inability to address these problems leads to a doubt about the reality and practica-

bility of a general database approach to incorporating existing Web data. Most researchers

believe a total reconstruction of the current Web structure may make the data integration

work easier [13, 81]. In contrast to this circumventing solution, the approach in this dis-

sertation provides an ad hoc integration system to tackle this problem directly.

An ad hoc integration system is a Web data management system that provides a tradi-

tional database management system environment for novice users to integrate and query

distributed data. An overall goal of an ad hoc integration system is to integrate a large

number of distributed Web sources and in-house databases to facilitate daily scientific

data analysis works. An ad hoc integration system needs to close the boundary between

end-users’ data integration requirements and the heterogeneous data environment. As a

result, it needs to develop a homogeneous data model to describe heterogeneous data, pro-

vide effective mechanisms for users to define and connect distributed data in real time,

www.manaraa.com

136

manage integration queries that may incur unpredictable data behaviors, and meet com-

plex data scheduling requirements. Under an ad hoc integration system, the Web becomes

an extensible part of in-house databases.

6.2 A Motivating Example

Accompanying the complete sequencing of whole genomes of several species, a larger

scale genetic information interpretation is underway. Prediction of biological functions,

for example, now has more options such as single gene similarity searches, biological

pathway comparisons, and genetic network references. Various biological data reposito-

ries have developed databases and Web tools facilitating genetic data analysis. For exam-

ple, the BLAST tool at NCBI [83] allows searching of similar gene sequences to identify

similar gene functions. KEGG (Kyoto Encyclopedia of Genes and Genomes) [12] de-

veloped integrated pathway/genome databases allowing prediction of metabolic pathways

from genome sequences. LocusLink at NCBI [59] provides a single query interface con-

necting curated sequences with descriptive information including official nomenclature,

sequence accessions, map locations, and related websites. It is, however, painstaking for

biologists to actively utilize these distributed Web resources for even simple data analysis

tasks given that more and more genomic data is available.

Consider a simple gene expression prediction scenario where a scientist wants to utilize

the KEGG pathway database to predict from a set of gene IDs the relative degree that each

www.manaraa.com

137

gene is contributing to a certain gene function. Since KEGG cannot recognize a gene ID to

search for participating pathways, the user needs to go through a data discovery procedure:

1. Go to the LocusLink database to retrieve the description of each gene corresponding
to the gene ID;

2. Use a special tool DBGET/gene [26] at the KEGG site to convert the gene descrip-
tion into an entry name recognizable by KEGG database.

3. Paste the entry name into a DBGET/LinkDB [27] interface to retrieve the participat-
ing pathways.

4. Connect each pathway to an XML/HTML file describing the relationships and reac-
tions among genetic objects.

5. Analyze the pathway files to detect activating gene products.

6. The number of pathways each gene activates or inhibits reflects the relative degree
of the gene affecting a gene function.

The above procedure needs to access various distributed data sources including:

A: The set of gene IDs for analysis in a local database;

B: The LocusLink database at the NCBI website returning a gene description recprd

given a gene ID;

C: DBGET/gene at the KEGG site returning a set of entry names given a gene descrip-

tion;

D: DBGET/LinkDB at the KEGG site returning a set of pathway links from an entry

name;

E: Pathway description files at KEGG in XML/HTML format.

In this example, datasetA is a structured database, datasetsB, C, andD are Web tools,

and dataset E is a set of semi-structured data files. In order to analyze the function of a

www.manaraa.com

138

gene (for example, to identify a human cancer-activating gene), a biologist needs to go

through the above data discovery procedure for each relevant gene from a human genome

and apply certain filtering conditions at each discovery step such as limiting the entry name

to start with an ‘hsa:’ string (representing human gene entries).

The above manual data discovery procedure may be frustrating when the number of

genes to be analyzed is large. Unfortunately, it has become routine for many biologists

to deal with such problems with even more complex operations. It would be ideal for

the heterogeneous data sources to be managed under a uniform framework, queries to be

recorded and submitted in a declarative way, and the complexity behind the physical data

operations to be hidden from biologists. From the database point of view, the above query

can be expressed simply in an algebraic expression as:

πgene−id,pathway,typeσentry like ‘hsa:%′(A �� B �� C �� D �� σtype=‘activate′E) (6.1)

It is the purpose of this research to provide a foundation for direct application of high-

level data manipulation operations – algebra operations – in the heterogeneous Web data

environment. By using this approach, the Web becomes a synthetic extension of traditional

database systems. Automated tools and visual interfaces provided with sound database

management support can be easily developed.

6.3 Ad Hoc Data Integration Solution

We have developed an ad hoc data integration system, Meteoroid (MEthodology for ad

hoc inTEgration of Online distributed heteROgeneous Internet Data), for biologists to

www.manaraa.com

139

integrate experimental data with online resources. A navigation-oriented Web interface

was designed to allow users to ‘pick up’ interesting data sources and attributes from the

Web by employing our automated PickUp wrapper technique. ‘Picking up’ a piece of

information usually means a user clicks on or selects a data item. For example, in order

to retrieve gene descriptions from LocusLink, a user can ‘pick up’ the search form from

the LocusLink website, enter a search term, submit the search, and ‘pick up’ the gene

description from the results page. A user’s behavior in this sequence of operations is

captured by the Meteoroid system and is tranformed into a declarative language called

a data definition language (DDL). The generated DDL expression memorizes the user’s

navigation pattern and can be used to automatically extract data of interest from the same

site for unexplored pages. Thus, it provides a means to record data collection procedures

electronically.

Meteoroid allows a user to pick up a piece of data, a table of data or a Web form from

a Web page. The ‘picked up’ information can then be accessed like a table (called virtual

table) in a local database. Meteoroid maintains virtual tables automatically even when

substantial changes have occurred in the original Web pages. The user accesses virtual

tables through SQL queries or through a visual interface wizard Meteoroid provides. This

means post processing for Web data can be easily done by applying conditions in an SQL

query or by invoking data transformation functions in the query.

Connecting and streamlining data access from different sites is extremely easy and can

be done with traditional table joins. A user usually does not need to be concerned about the

www.manaraa.com

140

order in which multiple tables are joined. Meteoroid will schedule access to data sources

according to the properties coming with each participating table. Input-output behavior

of each data source will be utilized and streamlined according to the join conditions in a

query.

To allow more complex data operations, such as scheduling access to Web sources

with constraints and merging data values from different sources with mediation rules, Me-

teoroid employs a multi-layer table and view architecture. The multi-layer architecture

facilitates flexible fusion and mediation of data at different level. Data mediation and

query scheduling constraints are encoded in a virtual view and can be maintained incre-

mentally. A virtual view can be seen as a cluster of related data sources for a scientific

investigation. Virtual views are encoded in XML files and can be stored and transmitted

easily.

Web data processing is slow, and complex scientific data mediation may consume even

more time. It is desirable that available results be shown to users early during the execution

of a query. Meteoroid devises a novel two-phase pipeline scheduling technique to expedite

the integration of results for users. A user can make use of this information to terminate

an unwanted query in an early stage.

Finally, Meteoroid provides a visual interface to facilitate ad hoc data integration. Us-

ing the visual interface, a user can define Web data sources in an ad hoc fashion with a

few clicks, design integration queries from a wizard interface, and monitor query results

in progress.

www.manaraa.com

141

6.4 Declarative Support for Web Data

Declarative support for Web data is a unique contribution of this research. Other recent

systems such as DiscoveryLink [42], which is based on Garlic [41] and DB2 [17] tech-

nologies, also claim to provide declarative definitions of wrappers for data sources. How-

ever, their declarative data definition can occur only after the heavy burden of wrapper

development is completed, which usually requires several days as well as special pro-

gramming skills. In contrast, our declarative language handles wrapper creation in the

background, accompanying our fully automatic wrapper generation and maintenance tech-

nique.

Web data in Meteoroid are defined as remote user-defined functions (RUDFs) and

managed as parameterized views. For form-based Web pages, parameters are the form

inputs. For static Web pages, no input parameter is required. RUDF always returns a table

of data as output. (Note that a single data item can also be treated as a table with one field.)

This rendering conforms to the table function concept in the new SQL:2003 standard [31].

Four elements are required for the data definition language (DDL) in Meteoroid to

define an RUDF: data location, input parameters, output fields, and a candidate HTQL

(Hyper Text Query Language) expression. The data location specifies the location of a

data source in the Universal Resource Location (URL) format. Input parameters define

the inputs in a Web form that need to be bound with actual data at run time. Default values

for input can be defined in the DDL. Output fields define a projection and transformation

of attributes from an internal wrapper. The candidate HTQL expression is responsible

www.manaraa.com

142

for the creation of an internal wrapper for data extraction. The reason for an additional

internal wrapper is that the internal wrapper is transformed and maintained by the system

automatically. It is typically more adaptable to changes occurring in the source data than a

handcrafted wrapper. However, the HTQL expression itself can be seen as a simple-form

wrapper when robustness is not a big concern and can be traded for speed.

Consider the following DDL to create a RUDF named KEGG LinkDB for pathway

finding from DBGET/LinkDB at the KEGG website. The location of the data source is

‘http:// www.genome.ad.jp/ dbget-bin/ www linkdb’, and it uses the fourth form in the

Web page. There are two input parameters: the keywords and the targetdb, with default

parameter values of ‘hsa:126’ and ‘path’, respectively. A candidate HTQL expression is

‘<PRE>.<A>’. Two output fields are generated: path url and path id. Notice the two

output fields are transformed from the same HTQL output – one takes the URL address

from a hyperlink and the other takes the text (as a path ID).

REDEFINE FUNCTION KEGG LinkDB
HREF [http://www.genome.ad.jp/dbget-bin/www linkdb]

FORM 4
PARAMETER

keywords VARCHAR(255) DEFAULT ‘hsa:126’,
targetdb VARCHAR(255) DEFAULT ‘path’,

GIVING [<PRE>.<A>] FIELDS
[%1:href &url] AS path url,
[%1:tx] AS path id;

An advantage of the declarative DDL for an RUDF is the succinct syntax. The DDL

itself is enough for the system to know where to fetch data, how to wrap the resulting

data, and what the input-output behavior of the data source is. No additional wrapper

www.manaraa.com

143

training task is required. The second advantage is the convenience in defining the wrapper.

A user does not need to develop a very complex and robust wrapper. The Meteoroid

system will generate a robust wrapper from the candidate HTQL expression and maintain

it properly. The third advantage is its add-on data transformation power. Data projection

and transformation in the definition of the output fields provides a flexible channel for

external programs to manipulate Web data while allowing the internal wrapper to be kept

intact. Finally, the declarative DDL makes ad hoc integration of a large number of Web

sources straightforward. We will see from Section 6.7 that users of the Meteoroid system

do not need to write the DDL by hand. Instead, a few clicks on the Web pages are enough

for an assistant program to compose the DDL automatically.

Once an RUDF is defined, it can be queried as a regular table in the database as well as

joined with other tables, including other RUDFs. Data binding is performed automatically

on an RUDF when it is joined with other tables or there are constant value assignments

in the query expression. Input fields without binding will use the default values defined

in the DDL. Meteoroid will schedule the execution order of distributed Web queries that

generate and consume data from each other. Another method for using an RUDF is to

actually use it as a function. The input parameters can be set to constant values, other

table fields, or default values. The functional view allows a manually defined execution

order for multiple RUDFs. We must point out that since an RUDF takes a relation as input

and generates a relation as output, it satisfies the closure property in the relational data

www.manaraa.com

144

model. Since we do not limit the source to which an input/output field can be bound, it

also satisfies the compositionality property.

6.5 Multi-layer Table and View Logical Design

Meteoroid compiles the declarative DDLs into a multi-layer logical design of tables and

views which is maintained in a data ontology file. A Meteoroid data ontology describes

the source schema and the data mediation rules of a Meteoroid object (table, view, data

source, etc.) in XML format. Meteoroid adopts a four-layer logical design – the data

source, physical table, virtual table, and virtual view layers. The physical table layer

includes actual tables managed by remote data sources. Remote data sources may provide

interfaces such as Web interfaces or ODBC interfaces for access to the physical tables,

but the physical tables are typically autonomous for an integration system. As a result,

Meteoroid will not manage the physical layer directly. Meteoroid maintains the other

three layers of data definitions in a data ontology file, including data source definitions,

virtual table definitions, and virtual view definitions. We will discuss the three layers of

data definitions in more detail below.

6.5.1 Data Source Definition

Each data source has a source definition tag defining the capability of the data source

and the method to connect to the data source. For example, a relational data source has

query and update capabilities, while an online HTML file has only query capability. A

www.manaraa.com

145

relational data source can be connected with an ODBC description, and an HTML file can

be connected with a URL description.

Figure 6.1 describes the definition of the DBGET/LinkDB data source, which is a Web

data source that can be accessed from a Web form at the URL ‘http://www.genome.ad.jp/dbget-

bin/www linkdb’.

<DataSource Name=‘KEGG LinkDB’ Type=‘Form’>
<Form

Type=‘Url’
URL=‘http://www.genome.ad.jp/dbget-bin/www linkdb’
FormIndex=‘4’

/>
</DataSource>

Figure 6.1 Definition of the LocusLink data source

6.5.2 Virtual Table Definition

A virtual table definition describes an exported relation from a data source. A data source

can have multiple exported virtual tables. For example, a relational database may have

multiple tables to be exported, and an HTML page may be interpreted as multiple views.

A virtual table definition describes a method to transform the source data into an exported

table, the names and types of the table fields, and the capability of the fields.

www.manaraa.com

146

With a virtual table definition, a standard SQL query can be translated into a source

query without difficulty. The virtual table provides a uniform data access interface for

heterogeneous data stored at different locations in different media.

Figure 6.2 shows an example definition of a DBGET/LinkDB virtual table including

the fields ‘keywords’, ‘targetdb’, and ‘path’, where the fields ‘keywords’ and ‘targetdb’

are input parameters and the field ‘path’ is an output field.

<Table Name=‘KEGG LinkDB’ DataSource=‘KEGG LinkDB’ Form=‘4’
Htql=‘<PRE>.<A>’>

<Fields>
<Field Name=‘keywords’ Type=‘varchar’ Length=‘50’ >

<SourceField Type=‘IN’ Name=‘keywords’ Value=‘hsa:126’/>
</Field>
<Field Name=‘targetdb’ Type=‘varchar’ Length=‘50’ >

<SourceField Type=‘IN’ Name=‘targetdb’ />
</Field>
<Field Name=‘path’ Type=‘memo’ Length=‘0’ >

<SourceField Type=‘OUT’ Htql=‘%1’/>
</Field>

</Fields>
</Table>

Figure 6.2 An example of the GenBank virtual table definition

6.5.3 Virtual View Definition

A virtual view defines a mediation strategy for data from multiple data sources. It includes

specifications of the connections among data sources, the unified schema, and the media-

tion rules. A connection among data sources is defined in a grouping of virtual table fields.

www.manaraa.com

147

Fields grouped together form a united field. Conflicts may occur for a united field during

the data integration stage. The conflicts are resolved by the mediation rules. A mediation

rule may specify a group function such as max or min to compute the united field value,

an evaluation function to select a best value, or a dependency rule to check dependency

with other fields.

Queries to a virtual view are translated into source queries during execution. The run-

time query translation ensures that the data is fresh. The capability of each data source is

inferred from the virtual table definition.

Figure 6.3 shows a virtual view connecting virtual tables of KEGG gene and KEGG LinkDB.

The new entry field in the virtual view is a merge of the entry field in the table KEGG gene

and the keywords field in the table KEGG LinkDB.

6.5.4 Advantage of Multi-layer Logical Design

The four-layer logical design introduces a set of unique advantages. First, the logical inde-

pendence of data definitions in each layer is more adaptable to the autonomicity property

of remote data sources. Physical tables in distributed data sources typically evolve quickly.

Virtual tables, however, reflect a relatively stable local view of physical tables. Further,

virtual tables can be dynamically aggregated into virtual views, making the connection of

disjointed data sources flexible. Second, separating virtual table design and virtual view

design allows a convenient interpolation of interoperability rules in the virtual view to re-

solve data heterogeneity tasks without violating the definition of each source table. A vir-

www.manaraa.com

148

<View Name=‘path view’>
<Fields>
<Field Name=‘keywords’ Type=‘varchar’ Length=‘50’>
<FieldSource DataSource=‘KEGG gene’ TableName=‘KEGG gene’

FieldName=‘keywords’/>
</Field>
<Field Name=‘entry’ Type=‘varchar’ Length=‘50’>
<FieldSource DataSource=‘KEGG gene’ TableName=‘KEGG gene’

FieldName=‘entry’/>
<FieldSource DataSource=‘KEGG LinkDB’ TableName=‘KEGG LinkDB’

FieldName=‘keywords’/>
</Field>
<Field Name=‘path’ Type=‘memo’ Length=‘0’>
<FieldSource DataSource=‘KEGG LinkDB’ TableName=‘KEGG LinkDB’

FieldName=‘path’/>
</Field>

</Fields>
</View>

Figure 6.3 A virtual view definition connecting DBGET/gene and DBGET/LinkDB Web

tools

www.manaraa.com

149

tual view reflects a specific data integration solution by users. A virtual view can be stored

in data ontology files permanently or constructed and destroyed on the fly during query

execution time. A permanent virtual view allows more complex data interoperation rules

to be encoded with the data ontology and be maintained incrementally. On the other hand,

one-time queries involving multiple data sources can be translated into an intermediate

virtual view to resolve data heterogeneity and be destroyed after the query is completed.

Third, multi-layer logical design allows more advanced data management strategies to be

carried out at different logical levels. In addition to the automatic wrapper maintenance

technique at the virtual table layer and the data interoperability rule management at the

virtual view layer, another powerful flow control mechanism is implemented at the virtual

view layer. Since a virtual view reflects an aggregation of tools and data, scheduling the

execution order of data queries is important for scientific data analysis. The flow control

mechanism allows scientists to organize the execution order of source queries according

to a specific scientific purpose. In our earlier example, a query to DBGET/LinkDB will

be submitted only when the entry name has been retrieved and satisfies the condition of

being prefixed with ‘hsa:’. As another example, to execute a query of a BLAST search

of NCBI, the retrieval of a BLAST result must be repeatedly submitted until the search is

completed at the server site (The BLAST server will return a BLAST ID only when the

query is not completed). Providing these functionalities makes Meteoroid more capable

of complex scientific data analysis tasks.

www.manaraa.com

150

6.6 Scheduling-oriented Query Processing

As we mentioned previously, query scheduling is an important task for scientific data inte-

gration. Meteoroid has designed a novel mechanism to handle the query scheduling prob-

lem. Specifically, Meteoroid introduces the flow control mechanism in query processing.

This section will describe the Meteoroid query scheduling solution. First, we discuss how

to interpret dependencies among data sources. Then we describe the modules – the query

rewriting, query transformation and query scheduling modules – for query scheduling in

more detail. Finally, we discuss the mediation of results with interoperation rules.

6.6.1 Dependencies Among Data

There are two categories of dependencies among data in Meteoroid. One is the internal

table dependency, and the other is the external table dependency. Here we use a table

to mean either a virtual table or a virtual view, which itself is an integration of multiple

tables. Internal table dependency means that some fields of a table depend on other fields

of the table. Internal key dependency is one kind of internal table dependency. Fields not

in the key depend on the key fields. Input-output dependency is another kind of internal

table dependency which is unique to RUDF-based tables. We call the input fields the input

key of the table. Fields not in the input key depend on the input key fields. We use

T : I � O

www.manaraa.com

151

to denote an internal dependency of table T where attributes in set O depend on attributes in

set I. For example, our motivating example has the following input-output dependencies:

B : geneid � description;
C : description � entry;
D : entry � path, pathway, pathurl.

External table dependency describes the relationship where fields of one table depend

on fields from another table. For example, in our running example, the entry name in table

D depends on the entry name in table C. External dependency occurs in a query or a virtual

view. For a virtual view, the dependency rules have been encoded in the data ontology as

a part of the view definition. For a query, external dependencies have to be checked and

set up at run time. If a table does not externally depend on other tables in a view, then we

say the table is grounded. Obviously, a query of data from a table that is not grounded has

to wait until the dependent attributes have been bound. We use

T1 : I � T2 : O

to denote an external dependency between tables T1 and table T2, where attributes in set O

of T2 externally depend on attributes in set I of T1. In our example, the following external

dependencies hold:

A : geneid � B : geneid;
B : description � C : description;
C : entry � D : entry;
D : pathurl � E : url.

www.manaraa.com

152

Internal and external table dependencies specify the constraints we need to consider

in the execution of queries involving multiple tables. It is a basic concept in our further

discussion of query processing.

6.6.2 Query Rewriting

Once Meteoroid receives a query, the first step is to analyze the query to see if there are

any data dependencies among multiple tables. If there is only one table involved, the query

is delivered directly to the query transformation module. Otherwise, a temporary virtual

view is created to encode table dependency rules, and the query is rewritten into a query

upon the virtual view. Both the temporary virtual view and the rewritten query are then

delivered to the query transformation module.

The idea behind query rewriting is simple. It checks join conditions in the query. A

new field in the virtual view is created for each set of join attributes. For each pair of join

attributes 〈α, β〉, where α and β are fields in tables T1 and T2 respectively, if α is a key

field of T1 but β is not a key field in table T2, then an external dependency rule is set up

between α and β:

T1 : α � T2 : β.

Join conditions are removed from the original query, and fields appearing in the rest of

the query are rewritten into corresponding fields in the new view. At this point, query

rewriting is completed.

www.manaraa.com

153

During the query rewriting step, only attributes relevant to the query are encoded into

the virtual view. Thus, unnecessary data retrieval can be saved in the remaining query

processing steps. This savings can be remarkable when some attributes require additional

Web access.

6.6.3 Query Transformation

The task of query transformation is to transform a query into an internal query graph,

set up an integration environment and generate candidate scheduling plans. The query

graph consists of a condition expression tree, a set of output expression trees, and a list of

source tables with their optimization conditions. The integration environment includes the

table dependency rules and data mediation rules read from the data ontology and necessary

cache tables created for intermediate query results. A candidate scheduling plan is a linear-

directed graph consisting of a sequence of source tables where each table depends only on

tables preceding it. Candidate scheduling plans are derived from table dependency rules.

Meteoroid derives a candidate plan for each grounded table. We will assume tables are

not circularly dependent on each other. Thus, the table dependencies form a partial-order

relationship among tables, and each plan can be derived with a standard sorting algorithm.

6.6.4 Query Scheduling

Meteoroid employs a pipelining strategy for query scheduling. Pipeline scheduling has a

set of advantages over traditional query scheduling in the Web environment. Since data

www.manaraa.com

154

navigation from the Web is typically slow, a complete join of two Web data sources may

require a lot of time. Waiting for the complete join of a large number of Web sources is

usually unacceptable. On the other hand, users doing distributed Web queries are more

interested in quickly seeing partial results first, and then waiting for the complete result set

or abandoning the query altogether based on the examined partial results. Furthermore,

pipeline scheduling can avoid overburdening a particular remote Web source. Traditional

query scheduling joins tables sequentially. Each table join may incur an extensive data

visit on the based table. A table from a Web data source may be clogged by a sudden and

explosive Web access. Pipelining will make Web access evenly distributed over the whole

query execution time and allows access to different Web sources to be interleaved. Thus

no remote Web source will be suddenly overwhelmed.

Meteoroid creates a novel two-phase pipelining technique to schedule distributed queries

and resolve data heterogeneity. The first phase is the key-pipelining, and the second phase

is the data-pipelining. Key-pipelining uniquely identifies the set of keys of the results

data, while data-pipelining retrieves data and resolves heterogeneities. Separation of key

retrieval and data retrieval is a particular consideration for Web data integration. First, keys

constitute a much smaller set of data than the data of the whole view. Retrieving only the

keys first will eliminate unnecessary data retrieval. Second, data with the same key may

be duplicated at different sites with different data representations. Special data mediation

can be conducted separately at the data-pipelining stages. Data with the same key can be

retrieved and mediated together to ensure that partial results are correct and integrated.

www.manaraa.com

155

Key-pipelining is scheduled in batch mode starting from a grounded table. Meteoroid

chooses a candidate plan and a set of tuples (seed tuples) from the starting table. Following

each plan, Meteoroid derives all of the keys from the source tables in a pipelined fashion,

where each table binds input parameters from data of preceding tables. Each seed tuple

may derive multiple key tuples, which we call the key factor of a plan. A plan with a large

key factor may result in a slow response of available results. Therefore, Meteoroid will

try, for each plan, to select a plan with a minimal key factor. We do the plan selection dy-

namically because in an ad hoc integration scenario few statistics are available for remote

data sources. The scheduling procedure can be captured by the following key-pipelining

algorithm.

Algorithm key-pipelining
Input: A set of candidate plans P , a constant k;
Output: Key tuples K;
Begin

For each candidate plan p in P
Fetch a seed tuple from the grounded table of p;
Derive key tuples from the seed tuple;
Compute key-factor α as the number of unique key tuples newly derived;

Choose the plan p′ with a minimal key-factor α;
While the grounded table in p′ is not end;

Fetch k seed tuples from the grounded table;
Derive key tuples from the seed tuples;

End

Data-pipelining is similar to key-pipelining. The difference is that instead of starting

from a seed tuple, data-pipelining starts from a key tuple. This happens when a non-key

attribute needs to be retrieved. Meteoroid first develops a data-retrieval plan for each non-

key field in the view. A data-retrieval plan is based on the dependencies in a virtual view

www.manaraa.com

156

connecting the key fields and the target field. A shortest path is computed, which reflects

the shortest sequence of Web navigations needed in order to retrieve the data attribute

starting from a set of key values. Dijkstra’s algorithm [23] is used to compute the shortest

path. Following a data retrieval plan for one table at a time, Meteoroid retrieves data from

the tables in a pipeline, where data from preceding tables are bound to the input fields of

the next table.

Data-pipelining will not increase the number of result tuples, although each view field

may have multiple data values from multiple source tables. In cases where multiple and

conflicting results are retrieved from different sources, a result mediation procedure is

needed. We will discuss this issue next.

6.6.5 Results Mediation

Scientific data analysis requires a combination of data from different sources. This may

be due to the fact that the data from a single source is incomplete or a more complex data

transformation procedure is expected. In our running example, only the KEGG database is

queried for pathway searching. However, KEGG collects only a subset of pathways. Other

pathway databases such as EcoCyc [48] may be included in our query for a larger scale

pathway analysis. When the pathway information is not present in the KEGG database, we

can use the pathway information from EcoCyc instead and vice versa. This is an example

of incomplete information. Since the pathways in KEGG and EcoCyc are developed and

curated by different groups of people using different methods, conflicting results may

www.manaraa.com

157

occur when they generate different pathways. If we believe only one of them is correct,

we have incorrect information from the other. Otherwise, if we believe both of them will

contribute in part to a combined result, we have imperfect information from each of them.

A method of solving these information problems from the database level apparently is

desirable for complex scientific data analyses.

Meteoroid allows data mediation rules to be encoded with a virtual view. A non-key

field in a view combining fields from multiple sources will be mediated by the rule. The

rule decides whether to discard any information or to transform the information into a

combined format. For instance, we may want to count available activating pathways from

all sources instead of seeing any of them.

6.7 Visual Interfaces for Ad Hoc Integration

The visual interface is one of the most important factors in designing a scientific data in-

tegration system. In an ad hoc integration scenario it is even more crucial. A direct impact

of a convenient visual interface is that scientists are more likely to use the technology

when it is user friendly. From the computer science point of view, how user interfaces can

be designed reflects the level of maturity in the system architecture organization and the

soundness of the underlying technology. Our interfaces will show that ad hoc integration

is practical for real world data integration problems. The basis of a declarative language

used for data description and manipulation proves that Meteoroid technology is platform

independent and can interoperate with existing programs well.

www.manaraa.com

158

Meteoroid visual interfaces demonstrate three functionalities. First, we show that Web

data can be defined conveniently and in a few clicks by employing our PickUp technique.

Second, we show that integration of distributed Web data is simple – just drawing the con-

nection between matching fields. Third, we show that distributed queries are scheduled

properly, and pipelined results help users evaluate their queries in the early stages of exe-

cution. These three functionalities demonstrate the declarativeness, compositionality, and

pipeline scheduling properties of our ad hoc integration approach, respectively.

6.7.1 Picking Up Web Data From Scratch

The first step toward Web data integration is to define Web data. Meteoroid provides a

navigation-oriented interface to allow users to explore the Web as usual. A user can also

submit Web forms and retrieve the dynamically generated results. At a page of interest, a

user can pick up the the form input (which may be a text box, a listbox, a checkbox, etc.)

with a click on the ‘Pickup Input’ button (Figure 6.4). Alternatively, a user can pick up a

piece of information or an entire table from the page with a click on the ‘Pickup Result’

or ‘Pickup Table’ button (Figure 6.4).

In the background, Meteoroid employs the PickUp technique to automatically generate

a wrapper for each piece of information the user has picked up. Upon a request to ‘Create

RUDF,’ Meteoroid composes an RUDF table DDL according to the information the user

has picked up. The table, with automatically labeled field names, is displayed to the user

graphically (Figure 6.5). Sample data extracted from the previous pages are also shown.

www.manaraa.com

159

Figure 6.4 Picking up a table of Web data in a click

www.manaraa.com

160

The user can confirm the RUDF table creation, modify the field names, or perform a set of

standard transformations over the extracted fields.

Figure 6.5 Customizing RUDF table creation

For example, to define the LocusLink data in our running example, a user can navigate

to the LocusLink website (‘http://www.ncbi.nlm.nih.gov/LocusLink/’), enter the search

term ‘15004’ (and click the ‘Pickup Input’ button to remember the input), and submit the

search. LocusLink will return two records to the user (as shown in Figure 6.4). The user

marks the first record and clicks on the ‘Pickup Table’ button to identify the results data of

interest. Then the user clicks the ‘Create RUDF’ button. The results page is displayed as a

LocusLink table as shown in Figure 6.5. The user names the table ‘LocusLink’ and names

www.manaraa.com

161

the columns ‘Link’, ‘LocusID’, ‘Org’, ‘Symbol’, and ‘Description’, respectively. Further,

the user can specify the ‘LocusID’ field as excluding any tags and the ‘Description’ field

as excluding the enclosed tags. Then the user confirms the creation of the LocusLink table.

The whole data definition procedure can be captured in a declarative RUDF DDL ex-

pression shown in an SQL box at the bottom right side of the screen. The DDL expression

can be recorded, stored, and transferred electronically for future reference. The DDL can

be executed at other Meteoroid systems at any time without repeating the above manual

operations. As a result, it provides a means for researchers to record data analysis proce-

dures.

6.7.2 Fusing Distributed Web Sources

Once the definition of data sources is completed, we can query distributed data just as

we query an in-house database. The fusion of distributed data is no more complex than

querying multiple tables locally. Researchers with some knowledge of SQL can directly

submit SQL queries to Meteoroid. Otherwise, we provide a wizard interface to help design

the fusion of distributed data.

The wizard interface works incrementally based on each pair of table connections.

In our running example, the DBGET/gene site (defined as a KEGG gene table) acquires

the gene description from the LocusLink site (defined as the LocusLink table) and the

DBGET/LinkDB site (defined as the KEGG LinkDB table) draws the entry name from the

DBGET/gene site. We can link these connections through the wizard interface as shown

www.manaraa.com

162

in Figure 6.6. We can further specify a filtering condition for each table. For example, we

may specify the entry name with the prefix ‘hsa:’ as a filter condition.

Figure 6.6 Connecting tables incrementally

The wizard interface returns a multiple-table SQL query expression in the SQL box

(Figure 6.7). Again this expression can be recorded and stored for future reference.

6.7.3 Monitoring Query Results

As Meteoroid schedules queries in a pipeline fashion, a query in progress can be monitored

in real time. Figure 6.8 shows the in progress results for our running example. Queries

can be terminated or resumed as needed.

www.manaraa.com

163

Figure 6.7 Generating SQL queries from wizard

www.manaraa.com

164

Meteoroid can execute queries in a batch. Experimental procedures can be recorded

declaratively in a batch and be submitted to Meteoroid as a whole.

Figure 6.8 Monitoring in progress query results

6.8 Conclusion

We have described an ad hoc integration methodology to extend a database management

scheme in the Web environment. Distributed and dynamic Web data has unique properties

that are different from the data in a traditional database such as a semi-structured organi-

zation, a navigational orientation, the lack of a schema and statistics, etc. Existing data

integration approaches show limitations in both data modeling and query processing, leav-

www.manaraa.com

165

ing a great burden for scientific researchers to utilize distributed Web resources for data

analyses in a timely manner. An ad hoc integration approach allows scientists to easily

integrate a large number of distributed data sources for daily scientific data investigation

purposes.

A novel two-phase pipeline scheduling technique was devised for distributed query-

ing and integration of heterogeneous online data sources. This technique ensures that

integrated queries to a large number of distributed Web resources will be scheduled and

streamlined properly without overwhelming remote servers, while available results will be

expedited to users as soon as possible.

An ad hoc integration system, the Meteoroid system, was shown to resolve an ex-

ample problem from life science data research. A declarative language to integrate and

query Web data was provided. The declarative language enables biologists to define Web-

oriented data discovery electronically and repeat experiments easily. A visual interface

was provided to help biologists integrate and query remote data in a few clicks.

www.manaraa.com

CHAPTER VII

CONCLUSION

The Web has entered our life as a major information source. In addition to the in-

formation dissemination role, the Web has been used by scientific communities to link

distributed databases and share scientific tools. Researchers now are able to access public

data all over the world and conduct scientific computing tasks online. The ever increasing

influence of a number of major biological databases such as NCBI, EMBL and SwissProt

makes biologists more and more dependent on online resources for data analysis. Re-

search has been devoted to the development of new technologies to facilitate automated

Web computing tasks.

A relational database framework for Web data management has been recognized as a

valid approach and provides a number of unique advantages. First, by turning Web opera-

tions into relational algebra expressions, complex Web computing tasks can be scheduled

and optimized by computer systems to increase efficiency. Second, a database manage-

ment layer provides better data independency for Web computing applications. Third,

relational database systems have been widely accepted by field researchers so there is no

need to retrain researchers.

166

www.manaraa.com

167

Existing research fails in different ways to achieve a practical database management

framework for scientific Web computing. First, manual and time-consuming wrapper

training prohibits scientific users from being able to integrate Web data in a timely man-

ner. Second, brittle and manually maintained wrappers hinder an integration database from

scaling up to larger data sets and adapting to changes. Third, traditional database schema

management and query planning techniques are limited in their ability to deal with a large

degree of data heterogeneity in Web data.

This dissertation argues that an ad hoc integration methodology to extend a database

management concept to the Web environment is plausible for scientific Web computing

tasks. First, ad hoc integration eliminates the complex wrapper training requirement for

Web data integration. Instead, a declarative and convenient data definition language will

produce a fully automated wrapper generation module. Second, ad hoc integration allows

scientists to integrate Web resources of interest for scientific data investigation purposes

in a timely manner and adjust paramters for dedicated queries. Third, ad hoc integration

allows scientists to define Web-intensive data investigation procedures electronically and

repeat experiments easily for the ever accruing scientific data.

The contributions of this dissertation can be summarized as follows:

• Ad hoc integration fully automates the syntactic integration of Web data under a
relational framework. It resolves the wrapper development bottleneck found in other
heterogeneous database systems.

• This dissertation research develops a set of data modeling techniques to effectively
and robustly transform Web data into relational entities. First, form-based Web data
are modeled as remote functions. Second, table-based Web data are modeled as
tables. By using these two constructs, Web data becomes compatible with the tradi-

www.manaraa.com

168

tional relational data model and can be queried homogeneously with in-house rela-
tional database systems.

• This dissertation research devised an automatic maintenance mechanism to adjust
an ad hoc integration system to the changing Web resources. The automatic mainte-
nance mechanism frees users from having to constantly monitor the changing Web
sources and allows the integration system to be easily scaled up.

• This dissertation research facilitates the data integration purpose through a novel
two-phase pipeline scheduling technique to query and mediate heterogeneous Web
data. This technique ensures that integrated queries to a large number of distributed
Web resources will be scheduled and streamlined properly without overwhelming
remote servers, while mediated results will be expedited to users as soon as possible.

• This dissertation research has demonstrated that declarative integration of Web data
is possible. A declarative language enables biologists to define data investigation
procedures electronically and repeat experiments easily. A visual GUI has been
developed to further assist users to compose distributed queries.

Ad hoc integration technology will prevent scientists from having to manually navi-

gate through an increasing number of scientific databases. We have demonstrated the use

of the ad hoc integration system for a biological pathway finding problem. We have not

conducted experiments to verify how much time a biologist can save using the ad hoc

integration system. However, reasonable estimations indicate that the savings can be dra-

matic. Suppose a user needs to compute 1000 tuples of data using four Web databases

sequentially. Suppose each Web database navigation costs a unit of time. Navigating the

1000 tuples manually would require 1000*4=4000 units of time. On the other hand, if

the user uses ad hoc integration, he or she nees only to navigate 4 pages manually with a

sample tuple (with a cost of 4 units of time); the rest of of the 999 tuples can be computed

automatically by the system with an SQL query. There will be some overhead for learning

the system, picking up data from each of the 4 pages, and formulating the SQL query using

www.manaraa.com

169

the visual interfaces. However, such overhead occurs only one time for the sample tuple

and becomes negligible when the amount of data to be computed is large.

Another advantage of an ad hoc integration approach is the ability for a scientific com-

munity to share data exploration procedures. Since scientific Web databases have become

increasingly complex and the data in each database are updated daily, manually verifying

past experiments is time-consuming and unaffordable. Sharing of experimental proce-

dures allows experiments to be verified later when the data has changed and allows peer

researchers to utilize prior experiments for larger-scale data analysis.

Ad hoc integration provides a foundation for further integration of existing Web data

more intelligently – such as reaching a stage by the Semantic Web vision [78] where soft-

ware agents automatically go to the Web and plan routine jobs for humans – but without a

total reconstruction of the current Web infrastructure.

www.manaraa.com

REFERENCES

[1] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian, “Query
Caching and Optimization in Distributed Mediator Systems,” Proceedings ACM SIG-
MOD International Conference on Management of Data, Montreal, Quebec, Canada,
Jun 1996, pp. 137–148, ACM Press.

[2] B. Adelberg, “NoDoSE - A Tool for Semi-Automatically Extracting Semi-Structured
Data from Text Documents,” Proceedings ACM SIGMOD International Conference
on Management of Data, 1998, pp. 283–294.

[3] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs,” Nucleic Acids Res., vol. 25, 1997, pp. 3389–3402.

[4] A. Arasu and H. Garcia-Molina, “Extrating structural data from web pages,” Pro-
ceedings ACM SIGMOD International Conference on Management of Data, San
Diego, California, Jun 2003, pp. 337–348.

[5] Y. Arens, C. A. Knoblock, and W.-M. Shen, “Query reformulation for dynamic
information integration,” Journal of Intelligent Information Systems, Special Issue
on Intelligent Information Integration, vol. 6, no. 2/3, 1996, pp. 99–130.

[6] N. Ashish and C. Knoblock, “Semi-automatic Wrapper Generation for Internet In-
formation Sources,” CoopIS, 1997, pp. 160–169.

[7] P. Atzeni and G. Mecca, “Cut & Paste,” Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Tucson, Arizona,
May 1997, pp. 144–153, ACM Press.

[8] P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens, “TAMBIS:
Transparent Access to Multiple Bioinformatics Information Sources,” 6th Interna-
tional Conference on Intelligent Systems for Molecular Biology, Montreal, Canada,
1998, pp. 25–34, AAAI Press, Menlo Park.

[9] R. Baumgartner, S. Flesca, and G. Gottlob, “Visual Web Information Extraction with
Lixto,” Proceedings of 27th International Conference on Very Large Data Bases,
VLDB 2001, Roma, Italy, Sep 2001, pp. 119–128, Morgan Kaufmann.

170

www.manaraa.com

171

[10] R. J. Bayardo, B. Bohrer, R. S. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap,
T. Ksiezyk, G. Martin, M. H. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Un-
nikrishnan, A. Unruh, and D. Woelk, “The InfoSleuth Project,” Proceedings ACM
SIGMOD International Conference on Management of Data, Tucson, Arizona, May
1997, pp. 543–545, ACM Press.

[11] P. Bonnet, J. E. Gehrke, and P. Seshadri, “Towards Sensor Database Systems,” Pro-
ceedings of the Second International Conference on Mobile Data Management, Jan
2001.

[12] H. Bono, S. Goto, W. Fujibuchi, H. Ogata, and M. Kanehisa, “Systematic Prediction
of Orthologous Units of Genes in the Complete Genomes,” Genome Informatics,
vol. 9, 1998, pp. 32–40.

[13] O. Boucelma, S. Castano, C. Goble, V. Josifovski, Z. Lacroix, and B. Ludäscher,
“Report on the EDBT’02 Panel on Scientific Data Integration,” ACM SIGMOD
Record, vol. 31, no. 4, 2002, pp. 107–112.

[14] A. Bouguettaya, B. Benatallah, L. Hendra, J. Beard, K. Smith, and M. Ouzzani,
“World Wide Database - Integrating the Web, CORBA, and Databases,” Proceed-
ings ACM SIGMOD International Conference on Management of Data, Philadelphia,
Pennsylvania, Jun 1999, pp. 594–596, ACM Press.

[15] P. Buneman, M. F. Fernandez, and D. Suciu, “UnQL: a query language and algebra
for semistructured data based on structural recursion,” VLDB Journal: Very Large
Data Bases, vol. 9, no. 1, 2000, pp. 76–110.

[16] R. G. G. Cattell, “ODMG-93: A Standard for Object-Oriented DBMSs,” Proceed-
ings ACM SIGMOD International Conference on Management of Data, Minneapolis,
Minnesota, May 1994, p. 480, ACM Press.

[17] D. D. Chamberlin, A Complete Guide to DB2 Universal Database, Morgan Kauf-
mann, San Francisco, CA, 1998.

[18] S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. D.
Ullman, and J. Widom, “The TSIMMIS Project: Integration of Heterogeneous In-
formation Sources,” Proceedings of the 10th Meeting of the Information Processing
Society of Japan, Tokyo, Japan, Oct 1994, pp. 7–18.

[19] L. Chen and H. M. Jamil, “On Using Remote User Defined Functions as Wrappers
for Biological Database Interoperability,” International Journal on Cooperative In-
formation Systems, vol. 12, no. 2, 2003, pp. 161–195, Special Issue on Biological
Databases.

www.manaraa.com

172

[20] L. Chen, H. M. Jamil, and N. Wang, “1st International Workshop on Biological
Data Management - BIDM 03,” Automatic Wrapper Generation for Semi-Structured
Biological Data Based on Table Structure Identification, Prague, Czech Republic,
2003.

[21] Z. Chen and P. Seshadri, “An Algebraic Compression Framework for Query Results,”
Proceedings of the International Conference on Data Engineering, Santiago, Chile,
Mar 2000.

[22] G. O. Consortium, “Gene Ontology Consortium,” http://www.geneontology.org/,
accessed on Mar 20, 2004.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Second Edition, The MIT Press, Cambridge, Massachusetts, 2001.

[24] V. Crescenzi, G. Mecca, and P. Merialdo, “RoadRunner: Towards Automatic Data
Extraction from Large Web Sites,” Proceedings of 27th International Conference on
Very Large Data Bases, VLDB 2001, Roma, Italy, Sep 2001, pp. 109–118, Morgan
Kaufmann.

[25] S. B. Davidson, J. Crabtree, B. P. Brunk, J. Schug, V. Tannen, G. C. Overton, and
J. C. J. Stoeckert, “K2/Kleisli and GUS: Experiments in integrated access to genomic
data sources,” IBM Systems Journal, vol. 42, no. 2, 2001, pp. 512–531.

[26] DBGET/gene, “Search GENES database using DBGET,” http://www.genome.ad.jp/
htbin/www bfind?genes, accessed on Apr 3, 2004.

[27] DBGET/LinkDB, “Search LinkDB database using DBGET,” http://www.genome.
ad.jp/dbget-bin/www linkdb, accessed on Apr 3, 2004.

[28] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, “XML-QL: A Query
Language for XML,” W3C Note, Aug 1998, http://www.w3.org/TR/NOTE-xml-ql.

[29] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis:
Probabilistic models of proteins and nucleic acids, Cambridge University Press,
1998.

[30] L. Eikvil, “Information extraction from the world wide web: a survey,” Technical
Report 945. 1999, Norwegian Computing Center.

[31] A. Eisenberg, K. Kulkarni, J. Melton, J.-E. Michels, and F. Zemke, “SQL:2003 Has
Been Published,” ACM SIGMOD Record, vol. 33, no. 1, Mar 2004.

[32] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, Y.-K. Ng, D. Quass, and
R. D. Smith, “Conceptual-Model-Based Data Extraction from Multiple-Record Web
Pages,” Journal of Data & Knowledge Engineering, vol. 31, no. 3, Nov 1999, pp.
227–251.

www.manaraa.com

173

[33] D. W. Embley, Y. S. Jiang, and Y.-K. Ng, “Record-Boundary Discovery in Web
Documents,” Proceedings ACM SIGMOD International Conference on Management
of Data, Philadelphia, PA, 1999, pp. 467–478.

[34] T. W. Finin, R. Fritzson, D. McKay, and R. McEntire, “KQML As An Agent Com-
munication Language,” Proceedings of the Third International Conference on In-
formation and Knowledge Management (CIKM’94), Gaithersburg, Maryland, Nov
1994, pp. 456–463, ACM.

[35] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu, “Query Optimization in the
Presence of Limited Access Patterns,” Proceedings ACM SIGMOD International
Conference on Management of Data, Philadelphia, Pennsylvania, Jun 1999, pp. 311–
322, ACM Press.

[36] X. Gao and L. Sterling, “AutoWrapper: automatic wrapper generation for multiple
online services,” Asia Pacic Web Conference ’99, Hong Kong, 1999.

[37] M. Godfrey, T. Mayr, P. Seshadri, and T. v. Eicken, “Secure and Portable Database
Extensibility,” Proceedings ACM SIGMOD International Conference on Manage-
ment of Data, L. M. Haas and A. Tiwary, eds., Seattle, Washington, Jun 1998, pp.
390–401, ACM Press.

[38] P. M. Gray, G. J. L. Kemp, C. J. Rawlings, N. P. Brown, C. Sander, J. M. Thornton,
C. M. Orengo, S. J. Wodak, and J. Richelle, “Macromolecular structure information
and databases,” TIBS, vol. 21, 1996, pp. 251–256.

[39] G. Grieser, K. P. Jantke, S. Lange, and B. Thomas, “A Unifying Approach to HTML
Wrapper Representation and Learning,” Discovery Science,DS 2000, vol. 1967, Dec
2000, pp. 50–64.

[40] J.-R. Gruser, L. Raschid, M. E. Vidal, and L. Bright, “Wrapper Generation for Web
Accessible Data Sources,” Proceedings of the 3rd IFCIS International Conference on
Cooperative Information Systems, New York City, New York, Aug 1998, pp. 14–23,
IEEE Computer Society.

[41] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang, “Optimizing Queries Across
Diverse Data Sources,” Proceedings of 23rd International Conference on Very Large
Data Bases, VLDB’97, Athens, Greece, Aug 1997, pp. 276–285.

[42] L. M. Haas, P. M. Schwarz, P. Kodali, E. Kotlar, J. E. Rice, and W. C. Swope, “Dis-
coveryLink: A system for integrated access to life sciences data sources,” IBM Sys-
tems Journal, vol. 40, no. 2, 2001, pp. 489–511.

[43] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. M. Breunig, and V. Vas-
salos, “Template-Based Wrappers in the TSIMMIS System,” Proceedings ACM

www.manaraa.com

174

SIGMOD International Conference on Management of Data, Tucson, Arizona, May
1997, pp. 532–535, ACM Press.

[44] J. Han, H. M. Jamil, Y. Lu, L. Chen, Y. Liao, and J. Pei, “DNA-Miner: A System
Prototype for Mining DNA Sequences,” Proceedings ACM SIGMOD International
Conference on Management of Data, Santa Barbara, CA, May 2001.

[45] W. Han, “Wrapper Application Generation for Semantic Web: An XWRAP Ap-
proach,” Ph.D. dissertation, College of Computing, Georgia Institute of Technology,
2003.

[46] H. M. Jamil, “Achieving Interoperability of Genome Databases Through Intelli-
gent Web Mediators,” Proc. IEEE International Symposium on Bio-Informatics and
Biomedical Engineering, Washington, DC, Nov 2000.

[47] V. Josifovski, P. M. Schwarz, L. M. Haas, and E. Lin, “Data Replication for Mobile
Computers,” Proceedings ACM SIGMOD International Conference on Management
of Data, 2002, pp. 524 – 532.

[48] P. Karp, M. Riley, M. Saier, I. Paulsen, J. Collado-Vides, S. Paley, A. Pellegrini-
Toole, C. Bonavides, and S. Gama-Castro, “The EcoCyc Database,” Nucleic Acids
Research, vol. 30, no. 1, 2002, pp. 56–58.

[49] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, I. Muslea, A. Philpot, and
S. Tejada, “The ARIADNE Approach to Web-based Information Integration,” Inter-
national Journal of Cooperative Information Systems (IJCIS), vol. 10, no. 1-2, 2001,
pp. 145–169.

[50] N. Kushmerick, “Wrapper induction: Efficiency and expressiveness,” Artificial In-
telligence, vol. 118, no. 1-2, 2000, pp. 15–68.

[51] N. Kushmerick, “Wrapper verification,” World Wide Web, vol. 3, no. 2, 2000, pp.
79–94.

[52] N. Kushmerick, “Wrapper Induction for Information Extraction,” Ph.D. dissertation,
Dept of Computer Science & Engineering, Univ of Washington, 2003.

[53] C. T. Kwok and D. S. Weld, “Planning to Gather Information,” Proceedings of
the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference, vol. 1, Aug 1996, pp. 32–39.

[54] Z. Lacroix, “Biological Data Integration: Wrapping Data and Tools,” IEEE Trans-
actions on Information Technology in Biomedicine, vol. 6, no. 2, Jun 2002, pp. 123–
128.

www.manaraa.com

175

[55] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira, “A Brief
Survey of Web Data Extraction Tools,” ACM SIGMOD Record, vol. 31, no. 1, 2002,
pp. 84–93.

[56] K. Lerman, S. Minton, and C. A. Knoblock, “Wrapper maintenance: A machine
learning approach,” To appear in the Journal of Artificial Intelligence Research,
2003.

[57] A. Y. Levy, A. Rajaraman, and J. J. Ordille, “Querying Heterogeneous Information
Sources Using Source Descriptions,” VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, Mumbai (Bombay), India, Sep 1996, pp.
251–262.

[58] L. Liu, C. Pu, and W. Han, “XWRAP: An XML-enabled Wrapper Construction Sys-
tem for Web Information Sources,” Proceedings of the 16th International Conference
on Data Engineering (ICDE’2000), San Diego CA, 2000.

[59] LocusLink, “LocusLink at NCBI,” http://www.ncbi.nlm.nih.gov/LocusLink/, ac-
cessed on Feb 2004.

[60] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni, “The Araneus Web-
Base Management System,” Proceedings ACM SIGMOD International Conference
on Management of Data, Seattle, Washington, Jun 1998, pp. 544–546, ACM Press.

[61] A. O. Mendelzon and T. Milo, “Formal Models of Web Queries,” Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Tucson, Arizona, May 1997, pp. 134–143, ACM Press.

[62] I. Muslea, “Active learning with multiple views,” Ph.D. dissertation, University of
Southern California, 2002.

[63] I. Muslea, S. Minton, and C. Knoblock, “Hierarchical Wrapper Induction for
Semistructured Information Sources,” Journal of Autonomous Agents and Multi-
Agent Systems, vol. 4, no. 1/2, 2001, pp. 93–114.

[64] I. Muslea, S. Minton, and C. Knoblock, “Active + Semi-Supervised Learning =
Robust Multi-View Learning,” Proceedings of the 19th International Conference on
Machine Learning (ICML 2002), 2002, pp. 435–442.

[65] NCBI, “National Center for Biotechnology,” http://www.ncbi.nlm.nih.gov/, access
in Mar 2004.

[66] A. Pan, J. Raposo, M. Álvarez, P. Montoto, V. Orjales, J. Hidalgo, and A. V. n.
Lucı́a Ardao, Anastasio Molano, “The Denodo Data Integration Platform,” Proceed-
ings of the 28th VLDB Conference, Hong Kong, China, 2002.

www.manaraa.com

176

[67] A. Papoulis, Probability and Statistics, Prentice Hall, Englewood Cliffs, NJ, 1990.

[68] N. W. Paton, R. Stevens, P. Baker, C. A. Goble, S. Bechhofer, and A. Brass, “Query
Processing in the TAMBIS Bioinformatics Source Integration System,” 11th interna-
tional conference on scientific and statistical database management, Z. M. Ozsoyo-
glu, G. Ozsoyoglu, and W. Hou, eds., Cleveland, Ohio, Jul 1999, pp. 138–147.

[69] W. Pearson and D. Lipman, “Improved tools for biological sequence comparison,”
Proceedings of the National Academy of Sciences of the USA, 1988, vol. 85, pp.
2444–2448.

[70] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom, “Querying Semi-
structured Heterogeneous Information,” International Conference on Deductive and
Object-Oriented Databases (DOOD), Singapore, Dec 1995, pp. 319–344.

[71] A. Rajaraman, Y. Sagiv, and J. D. Ullman, “Answering Queries Using Templates with
Binding Patterns,” Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, San Jose, California, May 1995, pp.
105–112, ACM Press.

[72] J. Robie, J. Lapp, and D. Schach, “XML Query Language (XQL),”
WWW The Query Language Workshop (QL), Cambridge, MA, Dec 1998,
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[73] Sacch3D, “Sacch3D: Structural Information for Yeast Proteins,” http://genome-
www. stanford.edu/Sacch3D/, access on Feb 1, 2002.

[74] A. Sahuguet and F. Azavant, “Building Light-Weight Wrappers for Legacy Web
Data-Sources Using W4F,” VLDB’99, Proceedings of 25th International Conference
on Very Large Data Bases, M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B.
Zdonik, and M. L. Brodie, eds., Edinburgh, Scotland, UK, Sep 1999, pp. 738–741,
Morgan Kaufmann.

[75] A. Sahuguet and F. Azavant, “Building Light-Weight Wrappers for Legacy Web
Data-Sources Using W4F,” Proceedings of 25th International Conference on Very
Large Data Bases, VLDB’99, Edinburgh, Scotland, UK, Sep 1999, pp. 738–741,
Morgan Kaufmann.

[76] P. Seshadri, “Enhanced Abstract Data Types in Object-Relational Databases,” VLDB
Journal, vol. 7, no. 3, 1998, pp. 130–140.

[77] A. P. Sheth and J. A. Larson, “BioKleisli: A Digital Library for Biomedical Re-
searchers,” Internation Journal on Digital Libraries, vol. 1, no. 1, 1997, pp. 36–53.

www.manaraa.com

177

[78] A. P. Sheth and R. Meersman, “Amicalola Report: Database and Information System
Research Challenges and Opportunities in Semantic Web and Enterprises,” ACM
SIGMOD Record, vol. 31, 2002, pp. 98–106.

[79] T. Smith and M. Waterman, “Identification of common molecular subsequences,”
Molecular Biology, vol. 147, 1981, pp. 195–197.

[80] R. Stevens, C. Goble, N. W. Paton, S. Bechhofer, G. Ng, P. Baker, and A. Brass,
“Complex Query Formulation Over Diverse Information Sources in TAMBIS,”
Bioinformatics: Managing Scientific Data, May 2003.

[81] B. Sturgeon, D. McCourt, J. Cowper, F. Palmer, S. MaClean, and W. Dubitzky, “Can
the Grip Help to Solve the Data Integration Problems Molecular Biology?,” Pro-
ceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and
Grid(CCGRID’03), Tokyo, Japan, May 2003, pp. 594–600.

[82] J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The
CLUSTAL X windows interface: flexible strategies for multiple sequence alignment
aided by quality analysis tools,” Nucl. Acids. Res., vol. 25, no. 24, 1997, pp. 4876–
4882.

[83] D. L. Wheeler, D. M. Church, S. Federhen, A. E. Lash, T. L. Madden, J. U. Pontius,
G. D. Schuler, L. M. Schriml, E. Sequeira, T. A. Tatusova, and L. Wagner, “Database
resources of the National Center for Biotechnology,” Nucleic Acid Research, vol. 31,
no. 1, 2003, pp. 28–33.

[84] L. Wong, “Kleisli, its Exchange Format, Supporting Tools, and an application in
Protein Interaction Extraction,” IEEE International Symposium on Bio-Informatics
and Biomedical Engineering, Arlington, Virginia, Nov 2000, pp. 21–28.

[85] R. Yerneni, C. Li, J. D. Ullman, and H. Garcia-Molina, “Optimizing Large Join
Queries in Mediation Systems,” Proceedings of the 7th International Conference on
Database Theory - ICDT ’99, Jerusalem, Israel, Jan 1999, vol. 1540 of Lecture Notes
in Computer Science, pp. 348–364, Springer.

	Ad Hoc Integration and Querying of Heterogeneous Online Distributed Databases
	Recommended Citation

	D:/doc/courses/project/qualify/dissertation7/dissertation.dvi

